1. Phasing of dragon fly wings can improve aerodynamic efficiency by removing swirl. James R. Usherwood and Fritz-Olaf Lehmann. http://www.rvc.ac.uk/SML/People/documents/Usherwood_Lehmann_Interface2008.pdf
2. Mechanics of dog walking compared with a passive, stiff-limbed, 4-bar linkage model, and their collisional implications James R. Usherwood, Sarah B. Williams and Alan M. Wilson. http://www.rvc.ac.uk/SML/People/documents/WalkingDogs.pdf
3. The mechanics of jumping versus steady hopping in yellow-footed rock wallabies. C. P. McGowan1, R. V. Baudinette2, J. R. Usherwood and A. A. Biewener. http://www.rvc.ac.uk/SML/People/documents/McGowanetal2005.pdf
4. Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height. Monica A. Daley, James R. Usherwood, Gladys Felix and Andrew A. Biewener. http://www.rvc.ac.uk/SML/People/documents/Daleyetal2005.pdf
5. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds. Tyson L. Hedrick, James R. Usherwood and Andrew A. Biewener. http://www.rvc.ac.uk/SML/People/documents/Hedrickaccelerometer2004.pdf
6. The aerodynamics of avian take-off from direct pressure measurements in Canada geese (Branta canadensis). James R. Usherwood, Tyson L. Hedrick and Andrew A. Biewener. http://www.rvc.ac.uk/SML/People/documents/UsherwoodGoose2003.pdf
7. The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. James R. Usherwood and Charles P. Ellington. http://www.rvc.ac.uk/SML/People/documents/UshInsect2.pdf
8. The aerodynamics of revolving wings I. Model hawkmoth wings. James R. Usherwood and Charles P. Ellington., http://www.rvc.ac.uk/SML/People/documents/UshInsect1.pdf
9. Aerodynamics and Energetics of Animal Flight Based on Propeller Models. James R. Usherwood http://www.rvc.ac.uk/SML/People/documents/PhDthesis.pdf
10. Mechanical and Anatomical adaptations in terrestrial and aquatic buttercups to their respective environments. J.R. Usherwood, A.R. Ennos, D.J. Ball. http://www.rvc.ac.uk/SML/People/documents/UshEnnosBall.pdf
11. Geometrical features and wettability of dung beetles and potential biomimetic engineering applications in tillage implements. Jin Tong, Jiyu Sun, Donghui Chen, Shujun Zhang. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TC6-4C53R33-3&_user=952835&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=952835&md5=61e2f41940939de74c4ecc5364b11e46
12. Circumcolumnar microstructure of Tumblebug cuticle and biomimetic application. B. Chen, X. Peng , C. Cai, J. Fan, X. Wu. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6TXF-4JKHM6W-8-10&_cdi=5589&_user=952835&_orig=search&_coverDate=07%2F25%2F2006&_sk=998679998&view=c&wchp=dGLbVlW-zSkWb&md5=e5999a73b8a2cc1a469b850480d4f6c4&ie=/sdarticle.pdf
13. Helicoidal microstructure of Scarabaei cuticle and biomimetic research B. Chen, X. Peng, C. Cai, H. Niu, X. Wu. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXD-4JFHF6J-4&_user=952835&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000049198&_version=1&_urlVersion=0&_userid=952835&md5=877a6ba40958345c9f3238bb16125e78
14. Design and mechanical properties of insect cuticle. Julian F.V. Vincenta, Ulrike G.K. Wegstb. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6W66-4CTN16M-1-T&_cdi=6590&_user=952835&_orig=search&_coverDate=07%2F01%2F2004&_sk=999669996&view=c&wchp=dGLbVzb-zSkzV&md5=a836886925c6cee7cd24982da0721659&ie=/sdarticle.pdf
15. Structure and mechanical properties of crab exoskeletons. Po-Yu Chen, Albert Yu-Min Lin, Joanna McKittrick, Marc Andre´ Meyers. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B7GHW-4RM1KWN-1-T&_cdi=20189&_user=952835&_orig=search&_coverDate=05%2F31%2F2008&_sk=999959996&view=c&wchp=dGLbVtz-zSkzS&md5=461785fb7a16bba680ba22236baae6a4&ie=/sdarticle.pdf
16. Mechanical Properties of a Crab Shell. H. R. Hepburn, I. Joffe, N. Greens and K. J. Nelson. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T2P-4867W80-CY-1&_cdi=4924&_user=952835&_orig=search&_coverDate=03%2F01%2F1975&_sk=999499996&view=c&wchp=dGLbVlW-zSkzS&md5=c8d9f1831addee5f8196bce13e35811a&ie=/sdarticle.pdf
17. Biological materials: Structure and mechanical properties. Marc Andre´ Meyers, Po-Yu Chen, Albert Yu-Min Lin, Yasuaki Seki. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TX1-4NS0KM2-1&_user=952835&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000049198&_version=1&_urlVersion=0&_userid=952835&md5=1c2ba2cfdea046b1af52f2d7193ba714
18. Mechanical Properties in relation to Chemical Constituens of Postmold Cuticle of the Blue Crab (Callinectes Sapidus). James E. Dendinger, Alan Alterman. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T2P-4867VFB-T8-1&_cdi=4924&_user=952835&_orig=search&_coverDate=12%2F31%2F1983&_sk=999249996&view=c&wchp=dGLzVzz-zSkWz&md5=bb10b156b26664287854aacc604da68f&ie=/sdarticle.pdf
19. Biomimetics of Campaniform Sensilla: Measuring Strain from the Deformation of Holes. Julian F. V. Vincent, Sally E. Clift, Carlo Menon. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4P72D9T-2-1&_cdi=33035&_user=952835&_orig=search&_coverDate=06%2F30%2F2007&_sk=999959997&view=c&wchp=dGLbVzz-zSkzS&md5=bdf7db7666442479d6cb8f397970ffd5&ie=/sdarticle.pdf
20. Fracture Toughness Properties of Three Different Biomaterials Measured by Nanoindentation. Ji-yu Sun, Jin Tong. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4NGTXK0-2-1&_cdi=33035&_user=952835&_orig=search&_coverDate=03%2F31%2F2007&_sk=999959998&view=c&wchp=dGLbVzz-zSkzk&_valck=1&md5=a7dd0c28f6e5fbe2ae0320c4b54f15b4&ie=/sdarticle.pdf
21. Biomimetic Design and Fabrication of a Hexapedal Running Robot. Jonathan E. Clark, Jorge G. Cham, Sean A. Bailey, Edward M. Froehlich, Pratik K. Nahata, Robert J. Full2, Mark R. Cutkosky. http://ieeexplore.ieee.org/iel5/7423/20185/00933183.pdf?tp=&isnumber=&arnumber=933183
22. Parametric Research of Experiments on a Carangiform Robotic Fish Qin Yan, Zhen Han, Shi-wu Zhang, Jie Yang . http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B82XN-4SWPB2J-2&_user=952835&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000049198&_version=1&_urlVersion=0&_userid=952835&md5=4114222bf259f54c8875b48d1b998a8d
23. Research on the Swing of the Body of Two-Joint Robot Fish. Ying-xiang Liu, Wei-shan Chen, Jun-kao Liu. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4SWPB2J-B-1&_cdi=33035&_user=952835&_orig=browse&_coverDate=06%2F30%2F2008&_sk=999949997&view=c&wchp=dGLbVtz-zSkzS&md5=4f6807b71a96a05fa60308f056713194&ie=/sdarticle.pdf
24. Plants and Animals as Concept Generators for the Development of Biomimetic Cable Entry Systems. Tom Masselter, Uwe Scharf, Thomas Speck. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4SWPB2J-C-1&_cdi=33035&_user=952835&_orig=browse&_coverDate=06%2F30%2F2008&_sk=999949997&view=c&wchp=dGLzVtb-zSkWz&md5=f45b6b32e33cf776d2e9b3c486152a9d&ie=/sdarticle.pdf
25. Two-Dimensional Aerodynamic Models of Insect Flight for Robotic Flapping Wing Mechanisms of Maximum Efficiency. Thien-Tong Nguyen, Doyoung Byun. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4S56Y4X-1-1&_cdi=33035&_user=952835&_orig=browse&_coverDate=03%2F31%2F2008&_sk=999949998&view=c&wchp=dGLbVzz-zSkzk&md5=aa2e4a758be4ddc5badacfb5c5d0be38&ie=/sdarticle.pdf
26. Designing a Biomimetic Ornithopter Capable of Sustained and Controlled Flight. Joon Hyuk Park, Kwang-Joon Yoon. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4S56Y4X-5-1&_cdi=33035&_user=952835&_orig=browse&_coverDate=03%2F31%2F2008&_sk=999949998&view=c&wchp=dGLzVzz-zSkzV&md5=e9204c46c1f154d66f2e634b51bbded2&ie=/sdarticle.pdf
27. Development of a Biomimetic Quadruped Robot. Thanhtam Ho, Sunghac Choi, Sangyoon Lee. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4RGFFJ7-2-1&_cdi=33035&_user=952835&_orig=browse&_coverDate=12%2F31%2F2007&_sk=999959995&view=c&wchp=dGLbVzb-zSkzk&md5=5c2094116976e7e07cf9568a89a24d29&ie=/sdarticle.pdf
28. Optimal Control of a Mackerel-Mimicking Robot for Energy Efficient Trajectory Tracking. Seunghee Lee, Jounghyun Park, Cheolheui Han. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4RGFFJ7-4-1&_cdi=33035&_user=952835&_orig=browse&_coverDate=12%2F31%2F2007&_sk=999959995&view=c&wchp=dGLzVzz-zSkWA&md5=0473e72911d4f2065530039204d6d192&ie=/sdarticle.pdf
29. Biomimetic structure design — a possible approach to change the brittlenes of ceramics in nature. Chang-an Wang, Yong Huang, Qingfeng Zan, Hai Guo and Shengyou Cai. http://linkinghub.elsevier.com/retrieve/pii/S0928493100001338
30. Locomotive Mechanism Design and Fabrication of Biomimetic Micro Robot Using Shape Memory Alloy. Young Pyo Lee, Byungkyu Kim, Moon Gu Lee and Jong-Oh. Park.http://ieeexplore.ieee.org/iel5/9126/28923/01302511.pdf?tp=&arnumber=1302511&isnumber=28923
31. Design of an Artificial Muscle Actuated Finger towards Biomimetic Prosthetic Hands. Vishalini Bundhoo and Edward J. Park. http://ieeexplore.ieee.org/iel5/10070/32295/01507437.pdf?tp=&isnumber=&arnumber=1507437
32. Mechanical properties of silkworm cocoons. Hong-Ping Zhao, Xi-Qiao Feng, Shou-Wen Yu, Wei-Zheng Cui and Feng-Zhu Zou. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXW-4GTW8XJ-2&_user=952835&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=952835&md5=166c20aa3ba8ac59f6426785f610114a
33. Biologically Inspired Behavioral Strategies for Autonomous Aerial Explorers on Mars. Laura Plice, Greg Pisanich, Benton Lau, Larry A. Young. http://ieeexplore.ieee.org/iel5/8735/27660/01235060.pdf?isnumber=27660&prod=CNF&arnumber=1235060&arSt=1&ared=304+vol.1&arAuthor=Plice%2C+L.%3B+Lau%2C+B.%3B+Pisanich%2C+G.%3B+Young%2C+L.A.
34. A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities. Nicolas Franceschini, Franck Ruffier, and Julien Serres. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VRT-4N0Y2B6-2&_user=952835&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000049198&_version=1&_urlVersion=0&_userid=952835&md5=dec59ea3a9af120aa39ee12345edbe3c
35. An Active Stereo Vision System Based on Neural Pathways of Human Binocular Motor System. Yu-zhang Gu, Makoto Sato, Xiao-lin Zhang. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4RGFFJ7-1-1&_cdi=33035&_user=952835&_orig=browse&_coverDate=12%2F31%2F2007&_sk=999959995&view=c&wchp=dGLbVlW-zSkzS&md5=d2361249a3e0fdd069471be788170c75&ie=/sdarticle.pdf
36. Simulation of Fluid Flow in a Channel Induced by Three Types of Fin-Like Motion. Wojciech Kowalczyk and Antonio Delgado. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4PTXRDS-5-1&_cdi=33035&_user=952835&_orig=browse&_coverDate=09%2F30%2F2007&_sk=999959996&view=c&wchp=dGLbVzb-zSkWA&md5=61289a9e300b5f83ed81e501a8a758b0&ie=/sdarticle.pdf
37. Applications - Influence of Biology on Engineering. Julian F. V. Vincent. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4M3CHKC-6-1&_cdi=33035&_user=952835&_orig=browse&_coverDate=09%2F30%2F2006&_sk=999969996&view=c&wchp=dGLbVzb-zSkzk&md5=c793451d4ab4833fe99f2747d1915e0d&ie=/sdarticle.pdf
38. The Frictional Coefficient of Bovine Knee Articular Cartilage. Qian Shan-hua, Ge Shi-rong, Wang Qing-liang. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4KCJ3XH-4-1&_cdi=33035&_user=952835&_orig=browse&_coverDate=06%2F30%2F2006&_sk=999969997&view=c&wchp=dGLbVtb-zSkWz&md5=02e5fc2426ea8ebb03cb0bd8c6f952ae&ie=/sdarticle.pdf
39. The Mechanical Design of Skin. J.F.V. Vincent. Jeronimidis. Topping. Kahn. http://www.bath.ac.uk/mech-eng//biomimetics/SkinModel.pdf
40. A novel strain sensor based on the campaniform sensillum of insects. A. Skordosy, P.H. Chanz, J.F.V. Vincent and G. Jeronimidis. http://www.bath.ac.uk/mech-eng//biomimetics/StrainSensor.pdf
41. From Cellulose to Cell. Julian F. Vincent. http://www.bath.ac.uk/mech-eng//biomimetics/CelluloseToCell.pdf
42. The Venus Flytrap as a model for a biomimetic material with built-in sensors and actuators. Mohsen Shahinpoor and Mathew S. Thompson. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6TXG-3YCDPH2-9-1&_cdi=5590&_user=952835&_orig=search&_coverDate=09%2F30%2F1995&_sk=999979995&view=c&wchp=dGLzVtz-zSkzS&md5=d26a0c3ec650b0aec838a7e5bbfff59f&ie=/sdarticle.pdf
43. Heat Transfer through Penguin Feathers. Colin Dawson, Julian F. V. Vincent, George Jeronimidis, Graham Rice, and Paula Forshaw. http://www.bath.ac.uk/mech-eng//biomimetics/PenguinFeathers.pdf
44. Afferent projections of infrared-sensitive sensilla in the beetle Melanophila acuminata(Coleoptera: Buprestidae). Wulfila Gronenberg and Helmut Schmitz. http://www.springerlink.com/content/lf6hl5lb5nxt5yqc/fulltext.pdf
45. Review of Fish Swimming Modes for Aquatic Locomotion. Michael Sfakiotakis, David M. Lane, and J. Bruce C. Davies. http://ieeexplore.ieee.org/iel4/48/16413/00757275.pdf?tp=&isnumber=&arnumber=757275.
46. Automated Construction using Co-operating Biomimetic Robots. Adrian Bowyer. http://people.bath.ac.uk/ensab/B-man/tr_11_00/
47. Bioinspired Surfaces with Special Wettability. Taolei Sun, Lin Feng, Xuefeng Gao, and Lei Jiang. http://isis.ku.dk/kurser/blob.aspx?feltid=135250
48. Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite. B. Chen, X. Peng, J.G. Wang, X. Wu. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6TWH-4CB6621-7-S&_cdi=5563&_user=952835&_orig=search&_coverDate=12%2F31%2F2004&_sk=999699992&view=c&wchp=dGLbVtz-zSkzS&md5=3cc3ebe9456b48991cac5088cb9e884b&ie=/sdarticle.pdf
49. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. Toshiyuki Ikoma, Hisatoshi Kobayashi, Junzo Tanaka, Dominic Walsh, and Stephen Mann. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WM5-48942G7-2-1G&_cdi=6925&_user=952835&_orig=search&_coverDate=06%2F30%2F2003&_sk=998579996&view=c&wchp=dGLbVlb-zSkWA&md5=edfac928198292a7c62c542d7c1bb
50. Soil Adhesion and Biomimetics of Soil-engaging Components: a Review. Lu-Quan Ren; Jin Tong; Jian-Qiao Li; Bing-Cong Chen. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WH1-45BC8W9-S-1&_cdi=6837&_user=952835&_orig=search&_coverDate=07%2F31%2F2001&_sk=999209996&view=c&wchp=dGLbVtb-zSkWA&_valck=1&md5=aa82b1a8a7e653255159a25a8a764cd8&ie=/sdarticle.pdf
51. Structure and mechanical properties of selected biological materials. P.-Y. Chen, A.Y.M. Lin, Y.S. Lin, Y. Seki, A.G. Stokes, J. Peyras, E.A. Olevsky, M.A. Myers, J. McKittrick. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B8G3J-4RW43FN-1-27&_cdi=41796&_user=952835&_orig=search&_coverDate=07%2F31%2F2008&_sk=999989996&view=c&wchp=dGLbVlW-zSkzS&_valck=1&md5=a744dd40fa236414b1ba78614cadf907&ie=/sdarticle.pdf
52. Bombardier Beetles and Airplane Engines. Brad Harrub, Ph.D. and Bert Thompson, Ph.D. http://www.apologeticspress.org/articles/print/2102
53. Comparing the Locomotion Dynamics of the Cockroach and a Shape Deposition Manufactured Biomimetic Hexapod. Sean A. Bailey, Jorge G. Cham, Mark R. Cutkosky, Robert J. Full. http://www-cdr.stanford.edu/biomimetics/pdf/iser2000_bailey_letter.pdf
54. Material Modeling for Shape Deposition Manufacturing of Biomimetic Components. Xiaorong Xu, Wendy Cheng, Daniel Dudek, Motohide Hatanaka, Mark R. Cutkosky and Robert J. Full. http://www-cdr.stanford.edu/biomimetics/pdf/detc2000_final.pdf
55. Biomimetic Control with a Feedback Coupled Nonlinear Oscillator: Insect Experiments, Design Tools, and Hexapedal Robat Adaptation Results.
Sean Ashley Bailey. http://www-cdr.stanford.edu/~baileys/thesis/2004_07_Bailey_thesis%20-%20Biomimetic%20control%20with%20a%20feedback%20coupled%20nonlinear%20oscillator%20-%20Insect%20experiments,%20design%20tools,%20and%20hexapedal%20robot%20adaptation%20results.pdf
56. Macromodel for the Mechanics of Gecko Hair Adhesion. Michael P. Reyes and Ronald S. Fearing. http://robotics.eecs.berkeley.edu/%7Eronf/PAPERS/reyes-icra08.pdf
57. Fabrication of gecko foot-hair like nano-structures and adhesion to random rough surfaces. Domenico Campolo, Steven Jones and Ronald S. Fearing. http://robotics.eecs.berkeley.edu/%7Eronf/PAPERS/nano03.pdf
58. Halteres for the Micromechanical Flying Insect. W.C. Wu, R.J. Wood, and R.S. Fearing. http://robotics.eecs.berkeley.edu/%7Eronf/PAPERS/ICRA02_Halteres.pdf
59. Biologically Inspired Design Of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms And Quasi-steady Aerodynamics. Rajkiran Madangopal, Zaeem A. Khan, and Sunil K. Agrawal. http://mechsys4.me.udel.edu/publications/papers/p94.pdf
60. Exploring the Use of Functional Models as a Foundation for Biomimetic Conceptual Design. Andrea Tinsley, Prem A. Midha, Robert L. Nagel, Daniel A. McAdams, Robert B. Stone, and L.H. Shu. http://www.mie.utoronto.ca/labs/bidlab/pubs/Tinsley_etal_DTM_07.pdf
61. Biomimetics Applied to Centering In Microassembly. L.H. Shu, TA. Lenau, H.N. Hansen, L. Altlng. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B8CXH-4P37B1V-X-1&_cdi=40087&_user=952835&_orig=search&_coverDate=12%2F31%2F2003&_sk=999479998&view=c&wchp=dGLbVlb-zSkzS&md5=73200e8dbbee47940d723a1ecdffb81f&ie=/sdarticle.pdf
62. Flocks, Herds, and Schools: A Distributed Behavioral Model. Craig W. Reynolds. http://delivery.acm.org/10.1145/40000/37406/p25-reynolds.pdf?key1=37406&key2=0603442221&coll=GUIDE&dl=GUIDE&CFID=3845241&CFTOKEN=82704917
63. The Chameleon Suit – A Liberated Future for Space Explorers. Edward Hodgson. http://www.asgsb.org/bulletins/v16n2/v16n2p107-120.pdf
64. Bio-Inspired Micro-Drills for Future Planetary Exploration. C. Menon, J. F. V. Vincent, N. Lan, A. Ellery, D. Zangani, C. Manning, M. Jaddou, and S. Eckersley. http://www.nicholas-lan.me.uk/files/CANEUS2006-11022.pdf
65. A Biomimetic Study of the Explosive Discharge of the Bombardier Beetle. N. Beheshti and A.C. McIntosh. http://www.heveliusforum.org/Artykuly/Biomimetics.pdf
66. Design of a parallel crank-rocker flapping mechanism for insect-inspired micro air vehicles. A. T. Conn, S. C. Burgess, and C. S. Ling. http://journals.pepublishing.com/content/4k3631r633xt2x62/fulltext.pdf
67. Design of a Cockroach-Like Running Robot for the 2004 SAE Walking Machine Challenge. Marc-André Lavoie, Alexis Lussier Desbiens, Marc-André Roux, Philippe Fauteux, and Éric Lespérance. http://www.perius.gel.usherbrooke.ca/download/CLAWAR/paper168.pdf
68. Modeling the Cellular Level of Natural Sensing with the Functional Basis for the Design of Biomimetic Sensor Technology. Jacquelyn K. Stroble, Steve E. Watkins, Robert B. Stone, Daniel A. McAdams, and Li H. Shu. http://intl.ieeexplore.ieee.org/iel5/4538204/4562710/04562718.pdf?tp=&arnumber=4562718&isnumber=4562710
69. Replication of butterfly wing and natural Lotus leaf structures by nanoimprint on silica sol–gel films. Tamar Saison, Christophe Peroz, Vanessa Chauveau, Serge Berthier, Elin Sondergard and Herv’e Arribart. http://www.iop.org/EJ/article/1748-3190/3/4/046004/bb8_4_046004.pdf?request-id=fa4e5873-7afb-492d-9b1c-af7e80691137
70. Mechanics of a mosquito bite with applications to microneedle design. M. K. Ramasubramanian, O. M. Barham and V. Swaminathan. http://www.iop.org/EJ/article/1748-3190/3/4/046001/bb8_4_046001.pdf?request-id=7786b97c-3752-4cc2-9a87-1c48e7db9a3e
71. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles. R. W. Blake, H. Ng, K. H. S. Chan and J. Li. http://www.iop.org/EJ/article/1748-3190/3/3/034002/bb8_3_034002.pdf?request-id=d440f1a5-3ac8-45ab-ad6a-ec00d57fdcb9
72. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Abel Vargas, Rajat Mittal and Haibo Dong. http://www.iop.org/EJ/article/1748-3190/3/2/026004/bb8_2_026004.pdf?request-id=ffeec868-85d8-4868-8c3c-02405e2df5b8
73. From honeybees to Internet servers: biomimicry for distributed management of Internet hosting centers. Sunil Nakrani and Craig Tovey. http://www.iop.org/EJ/article/1748-3190/2/4/S07/bb7_4_s07.pdf?request-id=6881ada9-0091-431a-8c0b-113352ecac91
74. Inspiration, simulation and design for smart robot manipulators from the sucker actuation mechanism of cephalopods. Frank W. Grasso and Pradeep Setlur. http://www.iop.org/EJ/article/1748-3190/2/4/S06/bb7_4_s06.pdf?request-id=4f9f300d-2ab6-481d-9b44-5ed9a93ae0e4
75. The dream of staying clean: Lotus and biomimetic surfaces. Andreas Solga, Zdenek Cerman, Boris F Striffler, Manuel Spaeth and Wilhelm Barthlott. http://www.iop.org/EJ/article/1748-3190/2/4/S02/bb7_4_s02.pdf?request-id=6300dc10-840f-4506-8614-f1c692ecc464
76. Insects did it first: a micropatterned adhesive tape for robotic applications. Stanislav N. Gorb, Mitali Sinha, Andrei Peressadko, Kathryn A. Daltorio and Roger D. Quinn. http://www.iop.org/EJ/article/1748-3190/2/4/S01/bb7_4_s01.pdf?request-id=1a9cc556-fe69-407a-a0e8-8e9bcbe7e289
77. The bombardier beetle and its use of a pressure relief valve system to deliver a periodic pulsed spray. Novid Beheshti and Andy C. Mcintosh. http://www.iop.org/EJ/article/1748-3190/2/4/001/bb7_4_001.pdf?request-id=51c68114-b097-4eaf-8ffb-2b125d756324
78. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV. E. de Margerie, J. B. Mouret, S. Doncieux and J-A. Meyer. http://www.iop.org/EJ/article/1748-3190/2/4/002/bb7_4_002.pdf?request-id=65cf8913-ba79-4157-8b9a-ea6326520f13
79. Insects in flight: direct visualization and flow measurements. R. J. Bomphrey. http://www.iop.org/EJ/article/1748-3190/1/4/S01/bb6_4_s01.pdf?request-id=c519ac9e-cfe9-4936-966c-3e1297587110
80. Direct measurements of the kinematics and dynamics of bat flight. Xiaodong Tian, Jose Iriarte-Diaz, Kevin Middleton, Ricardo Galvao, Emily Israeli, Abigail Roemer, Allyce Sullivan, Arnold Song, Sharon Swartz and Kenneth Breuer. http://www.iop.org/EJ/article/1748-3190/1/4/S02/bb6_4_s02.pdf?request-id=99d00347-4fab-4577-9fa1-1d5964063a11
81. Design of a bio-inspired controller for dynamic soaring in a simulated unmanned aerial vehicle. Renaud Barate, St’ephane Doncieux and Jean-Arcady Meyer. http://www.iop.org/EJ/article/1748-3190/1/3/002/bb6_3_002.pdf?request-id=492f9242-34e5-447f-ae09-bdf840497a30
82. Multimodal sensory integration in insects—towards insect brain control architectures. Jan Wessnitzer and Barbara Webb. http://www.iop.org/EJ/article/1748-3190/1/3/001/bb6_3_001.pdf?request-id=b84e8b9a-088f-4a88-a473-5b3fd447c6fe
83. Dolphin skin as a natural anisotropic compliant wall. V. V. Pavlov. http://www.iop.org/EJ/article/1748-3190/1/2/001/bb6_2_001.pdf?request-id=c49db7c0-d5b4-4937-8e7e-7495a59c9357
84. 3D Mapping of Macrotermes Michaelseni Mounds and Simulation of their Homeostatic Function: Lessons for Human Construction? Rupert Soar, Dennis Loveday, Weratunga Malalasekera, J. Scott Turner. Henk Versteeg. http://www.lboro.ac.uk/departments/mm/research/rapid-manufacturing/projects/reports/macrotermes_mound_for_homeostatic.pdf
85. Some Biological Hints on the Control of Heat and Mass Transfer. Yoshimichi Hagiwara. http://www.jstage.jst.go.jp/article/jtst/3/3/381/_pdf
86. Mechatronics and buoyancy implementation of robotic fish swimming with modular fin mechanisms. K. H. Low. http://journals.pepublishing.com/content/9336m44228m07747/fulltext.pdf
87. A biomimetic sensor for a crawling minirobot. Weiting Liu, A. Menciassi, S. Scapellato, P. Dario, and Yuquan Chen. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V16-4K66F39-1-2R&_cdi=5666&_user=952835&_orig=search&_coverDate=07%2F31%2F2006&_sk=999459992&view=c&wchp=dGLbVtb-zSkzk&md5=a359435f2739354114a3526a61c7be69&ie=/sdarticle.pdf
88. Biomimetics and the case of the remarkable ragworms.
Thomas Hesselberg. http://www.springerlink.com/content/b07g2q5q70592g61/fulltext.pdf
89. Biomimetics as a model for inspiring human innovation.
Yoseph Bar-Cohen.
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/40775/1/06-2329_A.pdf
90. Biomimetic Centering Behavior. Antonis A. Argyros, Dimitris P. Tskiris, and Cedric Groyer.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01371612
91. Mechanics of a Rapid Running Insect: Two, Four, and Six-Legged Locomotion. Robert J. Full and Michael S. Tu. http://jeb.biologists.org/cgi/reprint/156/1/215
92. Caterpillar locomotion: A new model for soft-bodied climbing and burrowing robots. Barry Trimmer, Ann Takesian, Brian Sweet, Chris Rogers, Daniel Hake, and Daniel Rogers.
http://ase.tufts.edu/bdl/documents/climbingBurrowing.pdf
93. BoxyBot: a swimming and crawling fish robot controlled by a central pattern generator. Daisy Lachat, Alessandro Crespi, and Auke Jan Ijspeert.
http://birg2.epfl.ch/publications/fulltext/lachat06.pdf
94. AmphiBot I: an amphibious snake-like robot. Alessandro Crespi, Andr’e Badertscher, Andr’e Guignard, and Auke Jan Ijspeert. http://birg2.epfl.ch/publications/fulltext/crespi05.pdf
95. Gecko Inspired Surface Climbing Robots. Carlo Menon, Michael Murphy, and Metin Sitti. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01521817
96. Biologically Inspired Miniature Water Strider Robot. Steve H. Suhr, Yun Seong Song, Sang Jun Lee, and Metin Sitti. http://www.me.cmu.edu/faculty1/sitti/nano/publications/Biologically_Inspired_Miniature_Water_Strider_Robot.pdf
97. A New Endoscopic Microcapsule Robot using Beetle Inspired Micro-fibrillar Adhesives. Eugene Cheung, Mustafa Emre Karagozler, Sukho Park, Byungkyu Kim, and Metin Sitti. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01511040
98. Toward Mission Capable Legged Robots through Biological Inspiration. Roger D. Quinn, Gabriel M. Nelson, Richard J. Bachmann, and Roy E. Ritzmann. http://www.springerlink.com/content/v633536q670g6444/fulltext.pdf
99. A Bionic Neural Network for Fish-Robot Locomotion Dai-bing Zhang, De-wen Hu, Lin-cheng Shen, Hai-bin Xie. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B82XN-4NGTXJY-2-1&_cdi=33035&_user=952835&_orig=search&_coverDate=12%2F31%2F2006&_sk=999969995&view=c&wchp=dGLzVtb-zSkzS&_valck=1&md5=e6a12b7c6bf36804b4a16e6cae8f68ea&ie=/sdarticle.pdf
100. Biologically Inspired Adhesion based Surface Climbing Robots. Carlo Menon, Metin Sitti. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01570524
101. Adhesive force of a single gecko foot-hair.
Kellar Autumn, Yiching A. Liang, S. Tonia Hsieh, Wolfgang Zesch,
Wai Pang Chan, Thomas W. Kenny, Ronald Fearing and Robert J. Full.
http://www.nature.com/nature/journal/v405/n6787/pdf/405681a0.pdf
102. Adhesion and Detachment of the Toe Pads of Tree Frogs. Gavin Hanna and W. Jon P. Barnes. http://jeb.biologists.org/cgi/reprint/155/1/103
103. Mechanisms of Adhesion in Geckos. Kellar Autumn and Anne M Peattie. http://icb.oxfordjournals.org/cgi/reprint/42/6/1081
104. Frictional adhesion: a new angle on gecko attachment K. Autumn1, A. Dittmore, D. Santos, M. Spenko and M. Cutkosky. http://jeb.biologists.org/cgi/reprint/209/18/3569?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=micrograph&searchid=1&FIRSTINDEX=20&resourcetype=HWFIG
105. Structural correlates of increased adhesive efficiency with adult size in the toe pads of hylid tree frogs. Joanna M. Smith, W. Jon. P. Barnes, J. Roger Downie, and Graeme D. Ruxton. http://www.springerlink.com/content/92xp62x351535tp6/fulltext.pdf
106. Toe pad morphology and mechanisms of sticking in frogs. Sharon B. Emerson and Diana Dihel. http://www3.interscience.wiley.com/cgi-bin/fulltext/119586553/PDFSTART
107. Dynamics of rapid vertical climbing in cockroaches reveals a template. Daniel I. Goldman, Tao S. Chen, Daniel M. Dudek and Robert J. Full. http://jeb.biologists.org/cgi/reprint/209/15/2990
108. Dynamics of geckos running vertically K. Autumn, S. T. Hsieh2, D. M. Dudek, J. Chen, C. Chitaphan and R. J. Full. http://jeb.biologists.org/cgi/reprint/209/2/260
109. Adhesion and friction in gecko toe attachment and detachment. Yu Tian, Noshir Pesika, Hongbo Zeng, Kenny Rosenberg, Boxin Zhao, Patricia McGuiggan, Kellar Autumn, and Jacob Israelachvili. http://www.pnas.org/content/103/51/19320.full.pdf
110. Biomimicry of Termite Engineering As Innovative Solution for Water and Soil Conservation. Amgad Elmahdi. http://works.bepress.com/cgi/viewcontent.cgi?article=1011&context=amgad_elmahdi
111. Biomimicry of Bacterial Foraging. Kevin Passino. http://www.ece.osu.edu/~passino/PapersToPost/biomimicBactForage_CSM.pdf
112. Ventilation & Thermal Constancy of a Colony of South African Termites. J. Scott Turner. http://www.esf.edu/EFB/turner/publication%20pdfs/ventilation%20%26%20temperature%20in%20odontotermes.pdf
113. Design, Fabrication and Performances of a Biomimetic Robotic Earthworm. A. Menciassi, S. Gorini, G. Pernorio, Liu Weiting, F. Valvo, and P. Dario. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01521789
114. Design of a Mechanism for Biaxial Rotation of a Wing for a Hovering Vehicle. Sean H. McIntosh, Sunil K. Agrawal, and Zaeem Khan. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01618672
115. Biomimetics—using nature to inspire human innovation. Yoseph Bar-Cohen. http://www.iop.org/EJ/article/1748-3190/1/1/P01/bb6_1_p01.pdf?request-id=871c39f1-c998-4953-9159-9fa033a7966b
116. A Method for Biomimetic Design of a Cooperative Mobile Robot System to Accomplish a Foraging Task. Jason Gerson Fleischer. http://vesicle.nsi.edu/users/fleischer/msthesis.pdf
117. Using biological models to improve innovation systems: The case of computer anti-viral software. John Rice Nigel Martin. http://www.emeraldinsight.com/Insight/viewPDF.jsp?Filename=html/Output/Published/EmeraldFullTextArticle/Pdf/2200100203.pdf
118. Solving materials design problems in biology and technology – a case study. Julian F. V. Vincent. http://www.mrs.org/s_mrs/bin.asp?CID=2708&DID=63154&DOC=FILE.PDF
119. Biomimetic Micromechanical Adaptive Flow-Sensor Arrays.
Gijs Krijnen, Arjan Floris, Marcel Dijkstra, Theo Lammerink, and Remco Wiegerink. http://eprints.eemcs.utwente.nl/9775/01/SPIE_65920F.pdf
120. An Analysis of Collective Movement Models for Robotic Swarms.
W.A.F.W. Othman, B.P. Amavasai, S.P. McKibbin and F. Caparrelli.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4400556
121. Engineering Swarming Systems. H. Van Dyke Parunak and Sven A. Brueckner.
http://www.newvectors.net/staff/parunakv/MSEAS04.pdf
122. Emergent Behavior Based Implements for Distributed Network Management. Otto Wittner. http://www.diva-portal.org/diva/getDocument?urn_nbn_no_ntnu_diva-1787-1__fulltext.pdf
123. Biomimicry of Social Foraging Bacteria for Distributed Optimization: Models, Principles, and Emergent Behaviors. Y. Liu and K.M. Passino.
http://www.springerlink.com/content/x56750949274l101/fulltext.pdf
124. On Ants, Bacteria and Dynamic Environments. Vitorino Ramos, Carlos Fernandes, and Agostinho C. Rosa.
http://arxiv.org/pdf/cs/0512005v1
125. Ant Algorithms for Self-Organization in Social Networks. Elke Michlmayr. http://wit.tuwien.ac.at/people/michlmayr/publications/dissertation_elke_michlmayr_FINAL.pdf
126. Biomimetic nanotechnology and nonlinear dynamics. S.Raiesdana, M.H. Gholpayeghani, A.M. Nasrabadi. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4077001&isnumber=4076986
127. Investigations into the design principles in the chemotactic behavior of Escherichia coli. Tae-Hwan Kim, Sung Hoon Jung and Kwang-Hyun Cho. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T2K-4PK7PBW-2&_user=952835&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=952835&md5=b54e2f1ee8e10fab48cbeb7de52c9806
128. Bacteria Colony Approaches with Variable Velocity Applied to Path Optimization of Mobile Robots. Leandro dos Santos Coelho, Cezar Augusto Sierakowski.
http://www.abcm.org.br/symposiumSeries/SSM_Vol2/Section_IV_Mobile_Robots/SSM2_IV_11.pdf
129. The Fuzzy Ant. Valeri Rozin and Michael Margaliot. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4383065&isnumber=4382928
130. Cricket Inspired Flow-Sensor Arrays. Gijs Krijnen, Theo Lammerink, Remco Wiegerink, and Jérôme Casas. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4388455&isnumber=4388308
131. Path Planning Optimization for Mobile Robots Based on Bacteria Colony Approach. Cezar Augusto Sierakowski and Leandro dos Santos Coelho.
http://www.springerlink.com/content/31316078h1645271/fulltext.pdf
132. Bacterium-inspired Robots for Environmental Monitoring.
Amit Dhariwal, Gaurav S. Sukhatme and Aristides A. G. Requicha.
http://www-lmr.usc.edu/~lmr/publications/Icra04bact.pdf
133. A novel distributed swarm control strategy based on coupled signal oscillators. Manfred Hartbauer and Heiner Romer.
http://www.iop.org/EJ/article/1748-3190/2/3/002/bb7_3_002.pdf?request-id=6bfc6469-8915-4991-8ad2-9358b8948f36
134. Pro-active trajectory formation using a biomimetic and a biomechanical model. A.J.Brussee.
http://www.ai.rug.nl/~alex/downloads/msc-ai-thesis-alex-brussee-2004.pdf
135. Introduction to Biomimetics: The wealth of inventions in Nature as an inspiration for human innovation. Yoseph Bar-Cohen. Biomimetics: Biologically Inspired Technologies. (1-40).
136. Biological Mechanisms as Models for Mimicking: Sarcomere Design, Arrangement and Muscle Function. Kenneth Meijer, Juan C. Moreno, and Hans H.C.M. Savelberg. Biomimetics: Biologically Inspired Technologies. (41-56)
137. Mechanization of Cognition. Robert Hecht-Nielsen. Biomimetics: Biologically Inspired Technologies. (57-128)
138. Digital Pheromone Mechanisms for Coordination of Unmanned Vehicles. H. Van Dyke Parunak, Sven Brueckner , John Sauter .
http://delivery.acm.org/10.1145/550000/544843/p449-parunak.pdf?key1=544843&key2=6157285221&coll=GUIDE&dl=GUIDE&CFID=6259472&CFTOKEN=91985077
139. Stigmergic Optimization: Inspiration, Technologies and Perspectives.
Crina Grosan and Ajith Abraham.
http://www.springerlink.com/content/q421653021119050/fulltext.pdf
140. Analysis of Foraging Behavior in Ant Swarms Based on StarLogo Simulation. Bailong Liu, Rubo Zhang and Changting Shi.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4522267&isnumber=4522117
141. Adaptive, Cricket-Inspired Artificial Hair Sensor Arrays.
R. K. Jaganatharaja, N. Izadi, J. Floris, T. S. J. Lammerink, R. J. Wiegerink and G. J. M. Krijnen.
http://www.stw.nl/NR/rdonlyres/5438FA0E-208A-4FA9-97A2-ED2181D585EB/0/jaganatharaja.pdf
142. Walking on Water: Biolocomotion at the Interface.
John W.M. Bush and David L. Hu.
http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.fluid.38.050304.092157?cookieSet=1
143. Electromagnetic Applications of
Biomimetic Research. Morley O. Stone, Rajesh R. Naik,
Lawrence L. Brott,
and Peter S. Meltzer Jr. http://www.airpower.maxwell.af.mil/airchronicles/apj/apj04/spr04/phispr04.html
144. Come Fly with Me. Michael H. Dickinson
http://eands.caltech.edu/articles/Dickinson%20Feature.pdf
145. Unsteady aerodynamics and flow control for flapping wing flyers
Steven Hoa, Hany Nassefa, Nick Pornsinsirirakb, Yu-Chong Taib, and Chih-Ming Hoa.
http://ho.seas.ucla.edu/publications/journal/2003/237.pdf
146. An Integrative Model of Insect Flight Control
William B. Dickson, Andrew D. Straw, Christian Poelma and
Michael H. Dickinson.
http://www.dickinson.caltech.edu/Research/Grand_Unified_Fly?action=AttachFile&do=get&target=Dickson_Straw_Poelma_Dickinson_2006.pdf
147. Biologically Inspired Feedback Design for Drosophila Flight.
Michael Epstein, Stephen Waydo, Sawyer B. Fuller, Will Dickson, Andrew Straw, Michael H. Dickinson and Richard M. Murray. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04282971
148. The Active Control of Wing Rotation by Drosophila. Michael H. Dickinson, Fritz-Olaf Lehmann and Karl G. Gotz.
http://jeb.biologists.org/cgi/reprint/182/1/173.pdf
149. Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. C. Poelma, W. B. Dickson, and M. H. Dickinson.
http://www.ahd.tudelft.nl/~chris/poelma_dickson_dickinson_2006.pdf
150. The Initiation and Control of Rapid Flight Maneuvers in Fruit Flies. Michael H. Dickinson. http://icb.oxfordjournals.org/cgi/reprint/45/2/274
151. The Control of Wing Kinematics and Flight Forces in Fruit Flies (Drosophila ssp). Fritz-Olaf Lehmann and Michael H. Dickinson. http://jeb.biologists.org/cgi/reprint/201/3/385
152. A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila. Gaby Maimon, Andrew D. Straw and Michael H. Dickinson.
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VRT-4S21J46-2&_user=952835&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=952835&md5=9064c7c8bc08180cd284abad29a1c15d
153. Unsteady Mechanisms of Force Generation in Aquatic and Aerial Locomotion. Michael H. Dickinson. http://icb.oxfordjournals.org/cgi/reprint/36/6/537
154. Molecular Design of Biological and Nano-Materials. Shuguang Zhang, Hidenori Yokoi, and Xiaojun Zhao. Biomimetics: Biologically Inspired Technologies. (229-42).
155. Biologically Inspired Optical Systems. Robert Szema and Luck P. Lee. Biomimetics: Biologically Inspired Technologies. (291-308).
156. Multifunctional Materials. Sia Nemat-Nasser, Syrus Nemat-Nassar, Thomas Plaisted, Anthony Starr, and Alireza Vakil Amirkhizi. Biomimetics: Biologically Inspired Technologies. (309-340).
157. Defense and Attack Strategies and Mechanisms in Biology. Julian F. V. Vincent. Biomimetics: Biologically Inspired Technologies. (341-363).
158. Biological Material in Engineering Mechanisms. Justin Carlson, Shail Ghaey, Sean Moran, Cam Anh Tran, and David L. Kaplan. Biomimetics: Biologically Inspired Technologies. (365-379).
159. Functional Surfaces in Biology: Mechanisms and Applications. Stanislav N. Gorb. Biomimetics: Biologically Inspired Technologies. (381-397).
160. Nastic Structures: The Enacting and Mimicking of Plant Movements. Biomimetics: Biologically Inspired Technologies. (473-493).
161. Lift and power requirements of hovering flight in Drosophila virilis.
Mao Sun and Jian Tang.
http://jeb.biologists.org/cgi/reprint/205/16/2413
162. Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight.
Douglas L. Altshuler, William B. Dickson, Jason T. Vance, Stephen P. Roberts, and Michael H. Dickinson.
http://www.pnas.org/content/102/50/18213.full.pdf
163. A Biologically Inspired Object Tracking System.
Roger DuBois.
http://www.springerlink.com/content/t175t2471p304220/fulltext.pdf
164. The Initiation and Control of Rapid Flight Maneuvers in Fruit Flies. Michael H. Dickinson. http://jeb.biologists.org/cgi/reprint/205/10/1507
165. A three-dimensional computational study of the aerodynamic mechanisms of insect flight. Ravi Ramamurti and William C. Sandberg. http://jeb.biologists.org/cgi/reprint/205/10/1507
166. The Control of Flight Force by a Flapping Wing: Lift and Drag Production. Sanjay P. Sane and Michael H. Dickinson.
http://jeb.biologists.org/cgi/content/abstract/204/15/2607
167. The Mechanical Design of Spider Silks: From Fibroin Sequence to Mechanical Function. J.M. Gosline, P.A. Guerett, C.S. Ortlepp, and K.N. Savage. http://jeb.biologists.org/cgi/content/abstract/202/23/3295
168. The Kinematics and Performance of Fish Fast-Start Swimming. Paolo Domenici and Robert W. Blake.
http://jeb.biologists.org/cgi/content/abstract/200/8/1165
169. Visual Navigation in Insects: Coupling of Egocentric and Geocentric Information. Rudiger Wehner, Barbara Michel, and Per Antonsen. http://jeb.biologists.org/cgi/content/abstract/199/1/129
170. Allometry of Quadrupedal Locomotion: The Scaling of Duty Factor, Bone Curvature, and Limb Orientation to Body Size. Andrew A. Biewener. http://jeb.biologists.org/cgi/content/abstract/105/1/147
171. Limb Mechanics as a Function of Speed and Gait: a Study of Functional Strains in the Radius and Tibia of Horse and Dog. Clinton T. Rubin and Lance E. Lanyonf. http://jeb.biologists.org/cgi/content/abstract/101/1/187
172. Fast-Start Performance and Body From in Seven Species of Teleost Fish. P. W. Webb. http://jeb.biologists.org/cgi/content/abstract/74/1/211
173. The Physical Properties of Spider’s Silk and their Role in the Design of Orb-Webs. Mark Denny. http://jeb.biologists.org/cgi/content/abstract/65/2/483
174. Central Programming and Reflex Control of Walking in the Cockroach. K.G. Pearson. http://jeb.biologists.org/cgi/content/abstract/56/1/173
175. Part 1: Materials. S.A. Wainwright, W.D. Biggs, J.D. Currey, J.M. Gosline. Mechanical Design in Organisms. (5 - 240).
176. Part 2: Structure Elements and Systems. S.A. Wainwright, W.D. Biggs, J.D. Currey, J.M. Gosline. Mechanical Design in Organisms. (241 - 344).
177. Part 3: Ecomechanics. S.A. Wainwright, W.D. Biggs, J.D. Currey, J.M. Gosline. Mechanical Design in Organisms. (345 - 368).
178. Biologically Inspired Reconfigurable Hardware for Dependable Applications. Cesar Ortega and Andy Tyrrell.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=660654&isnumber=14466
179. A Biologically Inspired Programming Model for Self-Healing Systems.
Selvin George, David Evans, and Lance Davidson.
http://www.cs.virginia.edu/papers/bio-inspired-p102-george.pdf
180. Biologically Inspired Models for Sensor Network Design. Ibiso Wokoma, Lionel Sacks, and Ian Marshall.
http://www.cs.kent.ac.uk/projects/secoas/papers/Bio_Inspired_Models_for_SNet_Design-Wokoma_Sacks_Marshall.pdf
181. Biologically-Inspired Artificial Neurons: Modeling and Applications.
M. Scholles, B.J. Hosticka, M. Kesper, P. Richert, and M. Schwarz. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=714185&isnumber=15470
182. Reactive Maze Solving with a Biologically –Inspired Wind Sensor. Tim Chapman, Adam T. Hayes, and Mark W. Tilden. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=5D407B3BA9D527780D89A2848BF9DC7A?doi=10.1.1.23.6197&rep=rep1&type=pdf
183. Biologically inspired calibration-free adaptive saccade control of a binocular camera-head. Jorg Bruske, Michael Hansen, Lars Riehn, and Gerald Sommer.
http://www.springerlink.com/content/8tfjly46e8xxvwq6/fulltext.pdf
184. Biologically-Inspired Bodies Under Surface Waves—Part 2: Theoretical Control of Maneuvering. Promode R. Bandyopadhyay, Sahjendra N. Singh, and Francis Chockalingam.
http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JFEGA4000121000002000479000001&idtype=cvips&prog=normal
185. Biologically inspired obstacle avoidance — a technology independent paradigm. D. Abbott A. Yakovieff, A. Moini, X.T. Nguyen, A. Blanksby, R. Beare, A. Beaumont-Smith, G. Kim A. Bouzerdoum, R.E. Bogner, and K. Eshraghian.
http://spiedl.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=PSISDG002591000001000002000001&idtype=cvips&prog=normal
186. Numerical simulations of undulatory swimming at moderate Reynolds number. Jeff D. Eldredge. http://www.iop.org/EJ/article/1748-3190/1/4/S03/bb6_4_s03.pdf?request-id=68e8c33a-c79b-443f-a245-e213365c98c1
187. Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish. George V. Lauder, Peter G. A. Madden, Rajat Mittal, Haibo Dong and Meliha Bozkurttas. http://www.iop.org/EJ/article/1748-3190/1/4/S04/bb6_4_s04.pdf?request-id=33b96357-6436-4834-bd58-6b0fbd84f172
188. Locomotion with flexible propulsors: II. Computational modeling of pectoral fin swimming in sunfish. Rajat Mittal, Haibo Dong, Meliha Bozkurttas, GeorgeV Lauder and Peter Madden. http://www.iop.org/EJ/article/1748-3190/1/4/S05/bb6_4_s05.pdf?request-id=627034bd-5678-4b84-8eec-bdd2300607e1
189. A formulation for calculating the translational velocity of a vortex ring or pair. Kamran Mohseni. http://www.iop.org/EJ/article/1748-3190/1/4/S08/bb6_4_s08.pdf?request-id=1dca7e4d-e2e4-484c-a658-82c48fc275ac
190. Thriving at high hydrostatic pressure: the example of ammonoids (extinct cephalopods). Fabio Vittorio De Blasio. http://www.iop.org/EJ/article/1748-3190/1/3/L01/bb6_3_l01.pdf?request-id=162d2897-3667-4d8b-b03d-40bd3ac7475b
191. Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates. Wang Zhang, Di Zhang, Tongxiang Fan, Jian Ding, Jiajun Gu, Qixin Guo and Hiroshi Ogawa.
http://www.iop.org/EJ/article/1748-3190/1/3/003/bb6_3_003.pdf?request-id=d9bbafde-79ce-4ab6-95cf-917dac856754
192. Sensors, motors, and tuning in the cochlea: interacting cells could form a surface acoustic wave resonator. Andrew Bell. http://www.iop.org/EJ/article/1748-3190/1/3/004/bb6_3_004.pdf?request-id=54afdc6f-9606-4d6b-a580-61194e5a9aa9
193. The myth and reality of Gray’s paradox: implication of dolphin drag reduction for technology. Frank E. Fish. http://www.iop.org/EJ/article/1748-3190/1/2/R01/bb6_2_r01.pdf?request-id=f2760d6c-9006-4348-9f44-2a446bd82168
194. Using a binaural biomimetic array to identify bottom objects ensonified by echolocating dolphins. David A. Helweg, Patrick W. Moore, Stephen W. Martin and Lois A. Dankiewicz. http://www.iop.org/EJ/article/1748-3190/1/2/002/bb6_2_002.pdf?request-id=3ca7863c-7152-4dee-a99d-3765b3f9f50f
195. Active articulation for future space applications inspired by the hydraulic system of spiders. C. Menon and C. Lira. http://www.iop.org/EJ/article/1748-3190/1/2/003/bb6_2_003.pdf?request-id=307108ce-80a4-4153-a78a-bb1caebd58ec
196. Micro-optical artificial compound eyes. J.W. Duparr ´e and F. C. Wippermann. http://www.iop.org/EJ/article/1748-3190/1/1/R01/bb6_1_r01.pdf?request-id=94349dc7-08dc-4912-bff2-407c21b59256
197. Cooperative optimal control: broadening the reach of bio-inspiration. Cheng Shao and Dimitrios Hristu-Varsakelis. http://www.iop.org/EJ/article/1748-3190/1/1/001/bb6_1_001.pdf?request-id=92ac550b-f24d-4066-95b0-18f11c34fe6b
198. Biosonar-inspired technology: goals, challenges and insights. Rolf Muller and Roman Kuc. http://www.iop.org/EJ/article/1748-3190/2/4/S04/bb7_4_s04.pdf?request-id=0efdba93-88a0-4b74-a800-b5ba21d280af
199. Renewable fluid dynamic energy derived from aquatic animal locomotion. John O. Dabiri. http://www.iop.org/EJ/article/1748-3190/2/3/L01/bb7_3_l01.pdf?request-id=f602afd7-181b-4f88-adbe-ebbd49d36b1a
200. Structural properties of a scaled gecko foot-hair. Jose Berengueres, Shigeki Saito and Kenjiro Tadakuma. http://www.iop.org/EJ/article/1748-3190/2/1/001/bb7_1_001.pdf?request-id=6d9b4ac1-b49d-4ed3-a14c-2537f7051b15
201. Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain. J. C. Spagna, D. I. Goldman, P-C Lin, D. E. Koditschek and R. J. Full. http://www.iop.org/EJ/article/1748-3190/2/1/002/bb7_1_002.pdf?request-id=251c1ed5-d534-4f74-9a99-30d024756f64
202. Dolphin sonar—modelling a new receiver Concept. Peter Dobbins. http://www.iop.org/EJ/article/1748-3190/2/1/003/bb7_1_003.pdf?request-id=75a9b2a4-1a79-4d7e-bdc8-84dd20baa859
203. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment. Yuyang Liu, Xianqiong Chen and J. H. Xin. http://www.iop.org/EJ/article/1748-3190/3/4/046007/bb8_4_046007.pdf?request-id=132fa128-8fe1-46a5-9772-0f99e3a73991
204. Bristled shark skin: a microgeometry for boundary layer control? A. W. Lang, P. Motta, P. Hidalgo and M. Westcott. http://www.iop.org/EJ/article/1748-3190/3/4/046005/bb8_4_046005.pdf?request-id=38925a22-4283-457b-b25c-fed6116cb165
205. Biomaterial-based infrared detection. O. Yavuz and M. Aldissi. http://www.iop.org/EJ/article/1748-3190/3/3/035007/bb8_3_035007.pdf?request-id=aa2cd9db-3e78-4ff2-8a5e-319e5b475a7d
Comments (0)
You don't have permission to comment on this page.