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Abstract
The development of a unique dolphin biomimetic sonar produced data that were used to study
signal processing methods for object identification. Echoes from four metallic objects proud
on the bottom, and a substrate-only condition, were generated by bottlenose dolphins trained
to ensonify the targets in very shallow water. Using the two-element (‘binaural’) receive array,
object echo spectra were collected and submitted for identification to four neural network
architectures. Identification accuracy was evaluated over two receive array configurations, and
five signal processing schemes. The four neural networks included backpropagation, learning
vector quantization, genetic learning and probabilistic network architectures. The processing
schemes included four methods that capitalized on the binaural data, plus a monaural
benchmark process. All the schemes resulted in above-chance identification accuracy when
applied to learning vector quantization and backpropagation. Beam-forming or concatenation
of spectra from both receive elements outperformed the monaural benchmark, with higher
sensitivity and lower bias. Ultimately, best object identification performance was achieved by
the learning vector quantization network supplied with beam-formed data. The advantages of
multi-element signal processing for object identification are clearly demonstrated in this
development of a first-ever dolphin biomimetic sonar.

1. Introduction

The ability of dolphins to recognize objects using echolocation
has been a subject of intense study for at least three decades
[1–6]. The echolocation signals used by bottlenose dolphins
(Tursiops spp.) are broadband impulsive clicks, with time–
bandwidth products near unity [7] and peak frequencies and
3 dB bandwidths generally ranging from 20 to 100 kHz [8, 9].
The combination of bandwidth and adaptive control over the
amplitude and spectral content of their biosonar signals [10]

4 Present address: USGS-BRD-PIERC, PO Box 44, Hawaii National Park,
HI 96718, USA.

has allowed bottlenose dolphins to exploit niches ranging
from estuaries and the surf zone out into pelagic waters.
An understanding of the acoustic and motor behaviors used
by echolocating dolphins may provide insight and guidance
toward the development of more capable sonar systems.

In 2000, the SSC-SD Biosonar Program Office began
construction of a dolphin biomimetic sonar (DBS) for
application to littoral navigation and object detection. The
U.S. Navy’s mine-hunting dolphin systems have proven
competence in shallow and very shallow water mine
countermeasures [11]. In contrast, man-made sonar systems
do not reliably detect or classify mines in the highly reverberant
shallow water channel. One component of the DBS is
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a biomimetic binaural sonar receiver—a paired array that
matches the bandwidth and directivity that has been measured
in Tursiops [12]. The construction of a binaural receiver
made possible the exploration of binaural models of dolphin
echolocation—an idea motivated by comparative research in
humans and other species [13–15].

Study of dolphin echolocating includes development of
biomimetic algorithms that attempt to instantiate one or
more signal processes putative to the dolphin’s biosonar
signal processing. In 1988, Gorman and Sejnowski
demonstrated that a backpropagation network (BPN) could
discriminate a target object from a clutter object using sonar
backscatter [16]. This study motivated application of artificial
neural networks (ANNs) to biosonar models and proof-of-
concept biomimetic classifiers. Roitblat and colleagues [17]
demonstrated that BPN and counterpropagation networks
could identify aspect-independent objects suspended in the
water column when ensonified with a synthetic dolphin sonar
click or an echolocating dolphin. Substantial improvement in
identification (ID) performance was realized using multi-echo
summation in the novel Integrator Gateway Network, designed
to model the dolphin’s decision making processes [18, 19].
The Integrator Gateway could identify aspect-independent
targets [18, 19] and a set of aspect-dependent geometric solids
ensonified in the water column by an echolocating dolphin
[20]. Other networks could use biomimetic representations
[21] or constant-binwidth and constant-Q input representations
to identify objects in the water column [22] or buried in
sediment [23].

Sonar systems may utilize one of several available ANNs
to aid in the identification of objects. These ANN architectures
include backpropagation, genetic reinforcement learning,
learning vector quantization, and probabilistic networks (for
details on neural network theory and architecture, see [24–26]).
BPNs form linear combinations of input vectors and, like
linear discriminant analysis, use parametric distributions of
prior information about the correct target category to minimize
RMS categorization error. Genetic reinforcement learning
networks (GLN) use genetic algorithms (e.g. [27]) to modify
network connection weights in the process of optimizing an
objective function, in this case mine identification accuracy.
Learning vector quantization (LVQ) and probabilistic (PNN)
architectures are implementations of the Bayes decision rule,
which uses Parzen windows to estimate the class-dependent
nonparametric probability density functions for each mine
category type (e.g., [28]). It is possible that one or more
of these networks may be specifically suited for capitalizing
on those particular echolocation behaviors of the dolphin that
contribute to superior object identification performance.

Data were collected using the DBS receiver to study signal
processing methods for object identification (ID). Acoustic
backscatter was collected from four complex metallic objects
(PDM2, MANTA, ROCKAN and MK82 DST) placed proud
on a sand/mud surface, and a substrate-only (NOSHAPE)
condition. An object is termed ‘proud’ when less than
50% of the object is buried in substrate. Echoes were
generated by two bottlenose dolphins that were trained to
echolocate on and report the presence or absence of a target

that was aligned with the objects. This study describes
a systematic evaluation of several two-element (‘binaural’)
signal processing methods and ANN architectures that were
applied to the unique dolphin biomimetic sonar (DBS). Object
identification accuracy was evaluated over two receive array
configurations, four neural network architectures and five
signal processing schemes. The target echoes analysed were
reverberation-limited. Identification of ensonified targets
independent of aspect using reverberation-limited echoes is
a substantial leap in what has been expected of generic
algorithms. Results of these analyses and summarization of
the major findings are reported. A set of recommendations
that guide further development of broadband object search
strategies in the littoral zone are given.

2. Methods

2.1. Dolphins

The objects were ensonified with the help of two dolphins,
HEP (male, 36 years) and TOD (female, 42 years), who were
housed in a floating 3-pen complex located in San Diego
Bay, Space and Naval Warfare Systems Center. One to two
companion dolphins resided with them, but were not present
in the experimental pen while sessions were being conducted.
A recent audiogram on HEP showed a deficit in the higher
frequencies only in the left ear, and an overall hearing deficit
in the right ear [29]. Although no free-field audiogram was
conducted on TOD, she did not have a medical history with
ototoxic drugs. Therefore, normal hearing for her age and
gender is expected, which includes the expectation of a high-
frequency hearing loss [29].

2.2. Apparatus/design

2.2.1. Configuration. The geometry of the experimental
apparatus and targets is illustrated in figure 1(A). A
stationing hoop was positioned 1 m underwater, with a
secondary detection object, a target object, and three recording
hydrophones placed directly on the axis of the biosonar
beam. The dolphins were trained to detect the presence or
absence of the detection object using echolocation, so thus
also fully ensonified the target object. By asking the dolphins
to echolocate on a secondary detection object in the water
column, this procedure allowed backscatter to be collected
from the bottom substrate in the absence of a target object,
called the NOSHAPE condition. A sheet-PVC shield coated
with closed-cell neoprene blocked echolocation between trials.
The hoop station was attached to a floating pier, which caused
the dolphin’s position to vary in relation to the stationary
bottom position of the target object as a function of tide height.
Average water depth below the dolphins was 5.71 ± 0.49 m,
corresponding to grazing angles of 46.25 ± 2.33◦ and range to
the substrate and object of 7.9 ± 0.36 m. Across the study, tide
change during sessions resulted in an average range change of
0.03 ± 0.15 m, which was negligible compared to the actual
range.
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Figure 1. Geometry of the binaural data collection. The top panel
(A) illustrates the overall geometry, including the relative position of
the dolphins’ stationing hoop, secondary detection object and
notional object on the bottom. The bottom left panel (B) shows
placement of the hoop station and binaural receiving hydrophones
relative to the walkway and water, and to the stationed dolphin. The
bottom right panel (C) illustrates the attachment of the binaural
receiving hydrophones and the two horizontal orientations of the
MRAs, parallel and skew (shown parallel).

2.2.2. Electronics. The outgoing click was collected on a
Reson model TC-4013 omni-directional hydrophone (receive
sensitivity of −211 dB re: 1 V µPa−1) placed 1 m in
front of the stationed dolphin, on axis. A gain of +20 dB
and bandpass filtration from 12–145 kHz was provided by
a DL Electronics 4302 filter/amplifier. Echoic data were
collected on a biomimetic binaural receiver consisting of two
channels of directional information (figure 1(B)—and (C)).
Two circular 1–3 composite hydrophones (d = 50 cm) were
specially manufactured for this effort by Material Systems
Incorporated (MSI). The MSI binaural receiver was modeled
after the dolphin’s hearing capabilities in the echolocation
band, with both hydrophones having a vertical and horizontal
beamwidth of 15◦ at 120 kHz and 30◦ at 60 kHz [12]. A gain of
+40 dB was added and channels were bandpass filtered from
13–135 kHz. A spatial separation of 12.5 cm between the
two MSI receivers mimicked the typical horizontal separation
of Tursiops’ auditory bullae. During data collection, the
horizontal receive axes of the MSI hydrophones were either
parallel (MSI-P) or skewed (MSI-S). In the skewed condition,
5◦ plastic shims diverged the receive beams outward by a total
of 10◦. Placement below the station hoop put the hydrophones
in close proximity to the dolphin’s lower jaw, and they were
angled, based on water depth, toward the substrate/target
object. All three channels of acoustic data (click and echo)
were simultaneously sampled at 313.94 kHz to 16 bits of
resolution using an Interactive Circuits and Systems Ltd Model

(A) (B)

(C) (D)

Figure 2. Object shapes, including orientation angles for the
aspect-dependent shapes. Panels A and B provide side views of the
PDM2 and MANTA, respectively. These are aspect-independent
shapes and thus were ensonified at one orientation only. Panels C
and D show overhead views of the DST and ROCKAN, respectively.
These shapes are aspect dependent, and the arcs indicate the
orientations at which they were ensonified.

ICS-130, 32 channel simultaneous sampling analog-to-digital
converter VME board. Data collection was hosted on a seven-
slot portable VME chassis Unix-based computer (Force 2CE
single board computer) and stored to hard drive.

2.2.3. The Binaural’00 echo database. Acoustic backscatter
was collected from four metallic objects (PDM2, MANTA,
ROCKAN and MK82 DST; figure 2), and substrate only
(NOSHAPE). Dimensions (l × w × h, or h × d, in cm) were
as follows: PDM2 = 77 × 77 × 120.5 (sphere diameter =
24), MANTA = 38 × 95, ROCKAN = 100 × 79 × 8–46,
DST = 113 × 12–28 × 28. The objects were placed
proud on an A1 bottom type (sand/mud, smooth surface, low
clutter). Data were collected at various orientations for each
object. The PDM2 (figure 2(A)) and MANTA (figure 2(B))
are aspect-independent shapes, therefore only one orientation
was necessary for each. Five orientations of the DST
(figure 2(C)) and ROCKAN (figure 2(D)) relative to the
dolphin’s echolocation beam were used; labeled 0◦, 30◦, 90◦,
120◦ and 180◦.

2.2.4. Neural networks. Backpropagation (BPN), genetic
reinforcement learning (GLN), learning vector quantization
(LVQ) and probabilistic (PNN) artificial neural networks
were utilized in this experiment. The networks, collectively
referred to as ANNs, were used to produce single-ping
identifications, so information from successive pings in echo
trains were not combined as a means to improve identification
performance [16–23]. Networks were constructed using
NeuralWare Professional II/Plus software. To identify
object echoes, each ANN architecture was provided with
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echo magnitude spectra, using bins ranging from 19.5625–
156.5 kHz, with a frequency resolution of 1.22 kHz/bin.
Initial testing demonstrated that linear amplitude scaling
outperformed logarithmic and power scaling, and that
constant-binwidth (FFT type) representations outperformed
constant-Q representations (third-octave and wavelet types).
Therefore, all reported results have utilized linear amplitude
scaling and constant-binwidth representations. All ANN input
vector values were normalized between ±1, as is required
[14–26]. This eliminated absolute amplitude differences, thus,
object echo identification was based on differences in spectral
peaks and notches across object types. In each ANN type,
echo input vectors were processed in the architecture-specific
hidden layers, after which a set of activation values is computed
for the output layer. The output layer had five elements, one
each for NOSHAPE, MANTA, PDM2, DST and ROCKAN.
The output unit with highest activation value was taken to
represent the network’s object identification decision.

2.2.5. Signal processing comparisons. Five digital signal
processing models were devised to test various methods for
exploiting the acoustic backscatter information provided by
the MSI binaural receiver. DSP was done on 256-point
time domain waveforms, extracting spectral magnitude vectors
M(f ) from FFTs prior to ANN object echo identification
processing. All the models were tested with data collected
under both MSI-P and MSI-S horizontal receive beam
conditions. Each model was tested using artificial neural
networks to classify the object echoes.

In one model, time series from the left and right binaural
channels were summed in place, a notional beam-forming
process that emphasizes reflections on-axis and de-emphasizes
off-axis backscatter. The summed time series was converted
to a simple spectral amplitude representation (BEAM model;
see equation (1)),

M(f ) = FFT(XL(t) + XR(t)) for 0 � t � (npts − 1),

(1)

where npts = 256, the spectral magnitude vector was computed
from the FFT, and the resulting vector is used as the input to the
neural network classifiers as described in section 2.2.4 above.

In the second model, a difference product of the two
channels was derived by computing the linear amplitude
spectra of each channel and then subtracting the right from
the left channel (DELTA model; see equation (2)),

I = ML(f ) − MR(f ) for 19.5 < f � 156.5 kHz,

(2)

where ML(f ) was the spectral magnitude vector for the left
channel, and MR(f ) was the spectral magnitude vector for the
right channel, and I was the resulting vector used as the input
to the neural network classifiers.

For the third model, linear amplitude spectra were
computed for each channel, and the two channels concatenated
(BOTH model; see equation (3)),

I = ML(f ) ∪ MR(f ) for 19.5 < f � 156.5 kHz,

(3)

where the ANN input vector I was twice as long as all other
DSP processes.

In the fourth model, separate neural networks were trained
to classify spectra from the left and right channels, and the
object identity derived by linear consensus of the neural
network outputs (VOTES model; see equation (4)),

V (trial) = OL ∧ OR, (4)

where V(trial) is the vote on any given trial, computed by
ANDing the output vector OL from the ANN using ML as the
input with the output vector OR from the ANN using MR as the
input. If the logical sum of the vectors was 0, then the trial was
discarded. If the logical sum of the vectors was 1, then the two
networks agreed, the trial was retained and used to create the
confusion matrix and to compute the network identification
accuracy. Thus, the VOTES scheme differs from the others in
that the computation was logical and occurred by comparing
the classification pattern of two independent ANNs. All other
schemes were implemented prior to ANN processing.

Finally, recall that previous neural network models
of dolphin echolocation performance have been monaural
[17–23]. Thus, benchmark monaural performance was tested
using spectral representation of echoes from the left channel
only (MONO model), thus I = ML(f ) for 19.5 < f �
156.5 kHz.

2.2.6. Network identification accuracy. Each network was
trained with standardized training data, and the networks’
accuracy with novel data was tested with standardized
generalization data. Ten training and generalization sets were
generated from TOD’s data contained in the Binaural’00 Echo
database. Using random draw without replacement, 250
echoes for each object type (NOSHAPE, MANTA, PDM2,
DST, ROCKAN) were selected as training data, and the
remaining echoes formed the generalization set. For the
aspect-dependent targets (DST, ROCKAN), the 250 echoes
were comprised of 50 echoes from each of the five orientations.
Thus, the prior probabilities of object type membership were
equal. This process was repeated ten times, thereby creating
ten standardized data sets that were used to train and test each
identification model. In addition to the generalization sets
from TOD’s data, network accuracy was evaluated using the
echoes generated by HEP.

Identification metrics were computed for each
combination of horizontal receive beam condition (MSI-P/

MSI-S), signal processing scheme and neural network type.
Per cent correct identification accuracy is equivalent to the
probability of a hit for any given target. Probability of hit
(p(H)) and probability of false alarm (p(FA)) were used to
estimate the object identification sensitivity index (d ′) and
bias (ln(β), henceforth β) [31]. Because object identification
here is a multiple-alternative model, the constant-ratio rule
was applied [32]. If the number of hits or number of false
alarms was zero, a log-linear correction was used to permit
parameter estimation [33]. All ROC statistics were calculated
using Information Structuring Systems, Ltd mABX Calculator
software, in which d ′ and β were estimated from p(H) and
p(FA) using a jackknifing process. d ′ can be computed
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Table 1. Number of click–echo samples for each object orientation and binaural receive axis position (MSI-P/MSI-S) collected from both
dolphins.

Aspect (◦)

Object Dolphin 0 30 90 120 180

NOSHAPE HEP 717/498 – – – –
TOD 3630/2993 – – – –

PDM2 HEP 9/158 – – – –
TOD 1136/2287 – – – –

MANTA HEP 72 / 24 – – – –
TOD 714/450 – – – –

DST HEP 260/128 11/355 478/275 430/180 237/29
TOD 1425/681 599/1749 692/1662 1405/635 741/450

ROCKAN HEP 185/232 231/230 149/189 258/73 181/155
TOD 778/941 1174/764 1195/1533 1038/663 801/939

Note: ‘–’ indicates that aspect was irrelevant for these objects.

from p(H) and p(FA) after normalizing or assuming
homoscedasticity, which allows the simple relationship d ′ =
(ZH − ZFA) where ZH is the Z score computed from p(H) and
ZFA is the Z score computed from p(FA). β was computed
using

β = exp

(
−

(
ZH

2

)2

−
(

ZFA

2

)2
)/√

2π. (5)

2.2.7. Data sessions. Every object was ensonified by both
HEP and TOD in separate 30-trial sessions, with one session
per animal conducted in a day. Each animal completed two
data sessions for every object at all orientations. In one of
the sessions, the horizontal receive axes were parallel (MSI-P)
and in the other the axes were skewed (MSI-S). Objects or
their orientations were changed across sessions, with baseline
substrate-only data (NOSHAPE) collected during the first ten
trials after a change (five trials with MSI-P and five with
MSI-S). Trials were arranged in blocks of ten, with an
equal number of GO (object present) and NO-GO (object
absent) trials presented per block. Trial type sequencing
was determined by a modified series [34] such that successive
trials within a block were controlled (0.5 first-order conditional
probability of a GO trial following a NO-GO, or vice versa).

2.3. Procedure

Before every session, water temperature, salinity, general
weather conditions, tide height and object type and orientation
were recorded. Prior to the start of each trial, the detection
object was placed at the appropriate depth if the trial was
an ‘object present’ type. The dolphin, upon receiving a
hand gesture, submerged and placed its head in the stationing
hoop. The data acquisition program was initiated and
the PVC shield raised, allowing the dolphin to echolocate
ad libitum. The data collection program stayed active for 5 s—
an ample time to collect all the outgoing echolocation clicks
and acoustic backscatter. Nearby dolphins were prevented
from echolocating during this time by having them hold
their heads out of the water in a trainer’s hand station to
avoid potential confounds in the collected click and echo

data. The trial was bounded by the same 5 s time frame,
whereby the animal would either touch a paddle at the water
surface to indicate an ‘object present’ decision (the ‘GO’
response) or remain in the hoop for the trial duration to
indicate an ‘object absent’ decision (the ‘NO-GO’ response).
Correct responding was reinforced with a tone and fish reward.
Incorrect responses occurred if the dolphin responded
‘NO-GO’ when the object was present (miss) or ‘GO’ when it
was absent (false alarm). The behavioral paradigm was used
to ensure that the dolphins actively searched for and ensonified
the target objects shapes.

3. Results

3.1. Click and object echo characteristics

Detailed analysis of the dolphins’ echolocation signal
structures was conducted using 36 819 click–echo pairs, 5744
from HEP and 31 075 from TOD (table 1). TOD produced
about six times more echolocation clicks than HEP, probably
due to her poor visual capabilities. Differences in the
acoustical properties of the two dolphins’ echolocation clicks
and corresponding acoustic backscatter were examined. Six
scalar measurements were made for each click and echo: the
peak–peak amplitude (p–p, in dB re: 1 µPa), energy flux
density (EFD, in dB re: 1 µPa2 s Hz−1), frequency at maximum
power (kHz), half-power bandwidth (kHz), center frequency
(kHz), and RMS bandwidth (kHz). Click amplitudes and
energy flux densities were source levels (SL), while echo
amplitudes were received levels (RL). All spectral measures
were made across the full 156.5 kHz Nyquist bandwidth.
Separate two-sided t-tests for unequal variances were run
on the outgoing clicks and returning echoes using Statistica
software. Sample sizes were large, thus we employed a
conservative alpha (α = 0.01) to test for significance. The
t-tests revealed differences in the echolocation clicks produced
by the two dolphins, all significant at the α = 0.01 level. HEP’s
clicks had substantially lower source levels and were higher
in frequency compared to TOD’s clicks; but bandwidth was
comparable (although statistically different). The differences
are summarized in table 2, and typical clicks for HEP and TOD
are illustrated in figure 3.
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Figure 3. Sample echolocation clicks for each dolphin. HEP’s sample is in the top row, TOD’s in the lower row. The left panels illustrate
the time waveforms, and the right panels show the power spectra. Time is in µs, frequency in kHz, and spectral amplitude in relative dB
(re: 1 µPa).

Table 2. Summary statistics for the dolphins’ clicks. All t-tests
were significant at α = 0.01.

Mean (±sd)
Click
property t value (df) HEP TOD

SL (p–p) 50.89 (10347.75) 182.97 (4.99) 186.88 (6.95)
SL (EFD) 45.60 (10731.98) 126.58 (4.73) 129.93 (6.83)
Peak F −28.37 (9198.81) 75.99 (23.67) 65.99 (28.84)
3 dB BW 8.78 (10878.69) 53.69 (15.57) 55.82 (22.79)
Center F −28.08 (10166.50) 74.14 (11.27) 69.29 (15.39)
RMS BW 45.57 (9313.53) 23.83 (3.09) 25.93 (3.82)

Table 3. Descriptive statistics for the echoes collected from HEP (top) and TOD (bottom).

Object N RL (p–p) RL (EFD) Peak F 3 dB BW Center F RMS BW

Mean values (±sd) for TOD

NOSHAPE 1215 120.26 (5.46) 74.44 (4.06) 23.10 (23.46) 4.00 (1.92) 44.48 (13.99) 27.99 (4.79)
PDM2 167 118.12 (4.34) 74.53 (3.72) 20.36 (17.85) 3.85 (1.38) 44.79 (15.41) 29.50 (4.44)
MANTA 96 120.76 (3.56) 75.60 (3.00) 22.71 (19.62) 3.79 (1.35) 43.39 (10.11) 28.69 (3.81)
DST 2383 120.96 (6.05) 75.22 (3.81) 29.03 (26.55) 3.94 (1.76) 46.36 (16.31) 27.48 (4.63)
ROCKAN 1883 120.39 (4.93) 74.00 (3.27) 25.29 (27.21) 4.13 (1.92) 47.52 (15.82) 29.69 (4.42)

Mean values (±sd) for TOD

NOSHAPE 6623 125.26 (6.13) 80.10 (4.30) 33.30 (23.47) 3.81 (1.74) 48.26 (13.28) 27.18 (4.28)
PDM2 3423 125.50 (4.28) 80.76 (3.12) 29.07 (19.98) 3.50 (1.38) 43.94 (9.79) 25.02 (2.99)
MANTA 1164 130.58 (5.15) 83.69 (4.15) 40.30 (16.79) 3.76 (1.54) 47.69 (9.39) 22.94 (2.74)
DST 10039 127.50 (6.85) 79.90 (4.56) 38.43 (26.91) 3.71 (1.78) 52.20 (14.07) 27.83 (4.50)
ROCKAN 9826 130.80 (6.63) 82.79 (4.98) 47.24 (23.42) 4.08 (1.96) 56.54 (12.33) 26.46 (3.73)

The animal’s outgoing click provided the synchronization
signal for extracting the object echo data at the correct range
gate. The speed of sound in water, computed from the session
parameter information, was also used to extract the echoes
from the data streams. Table 3 presents mean values (±1 sd)
of several key acoustic characteristics of the object echoes
by dolphin and target type. Because the objects were proud
on the bottom, the backscatter was convolved with bottom
reverberation and it was not possible to estimate target strength.
Thus, echo amplitudes were described using simple received
levels (RL) at the calibrated hydrophone. Because the
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Table 4. Generalization sensitivity (d ′) and bias (β) for a selection of networks, broken out by object type.

Network type

Object type BPN GLN LVQ PNN

NOSHAPE 1.736 (0.865) 0.177 (0.145) 2.226 (0.678) 2.715 (−4.176)
MANTA 3.635 (0.550) 1.980 (0.492) 4.288 (1.333) 5.451 (6.745)
PDM2 3.173 (0.451) 1.462 (0.157) 3.662 (0.915) 4.163 (5.016)
DST 2.158 (0.687) 0.520 (0.349) 2.316 (0.650) 2.829 (5.117)
ROCKAN 2.121 (0.643) 0.485 (0.361) 2.355 (0.699) 3.093 (5.680)

configuration of the calibrated hydrophone was constant, the
RL provided a metric for comparing amplitudes.

Note the differences between the acoustic properties of the
echo + reverberation in table 3 and the dolphin’s ensonification
signals in table 2. The peak–peak received levels are about
36 dB down after returning from the target object and bottom
and traversing approximately 16 m. Peak frequencies have
dropped almost an octave, and bandwidth is significantly
reduced. At 313.94 kHz A/D rate and average sound speed
of about 1512 m s−1, the range window represented by the
1024-pt echo samples was approximately 4.95 m. This range
is large compared to the object shape dimensions, thus bottom
reverberation seems to dominate the backscatter. ‘Object
present’ conditions had variable signal excess over the ‘target
absent’ (NOSHAPE) condition, suggesting variable signal-
to-reverberation levels that would contribute to variation in
object identification accuracy. Moreover, variations among
the frequency and bandwidth of the echoes were complex,
suggesting that identification accuracy would be lower for
the aspect-dependent objects (DST, ROCKAN) than for the
aspect-independent shapes (PDM2, MANTA).

3.2. Evaluation of ANNs

To gauge the relative accuracy of the four networks (BPN,
GLN, LVQ, PNN), a set of networks were trained using
TOD’s MONO, MSI-P signal processing scheme, and the
generalization accuracy measured across the ten data sets.
RMS error in the BPN reached asymptote at about 25% to
30%, thus all BPN networks were trained until RMS error
reached 27% or 500 000 epochs had elapsed. Each GLN was
run for 10 000 generations, 50 parents per generation, using
identification accuracy as the metric (which required about
12 h per network). The LVQ were trained until RMS error
reached 5% or 56 250 epochs had elapsed. The PNN recall
parameter sigma was optimized numerically using holdout
training [35]; the values converged to 0.4 for all training sets.
For each network type, the confusion matrices were pooled
and estimates of d ′ and β were computed.

The results are presented in table 4 and inspection
reveals several conclusions. One, the GLN was characterized
by poor sensitivity across all object types (NOSHAPE,
MANTA, PDM2, DST, ROCKAN). Two, the BPN and
the Parzen classifiers (LVQ and PNN) were characterized
by good sensitivity. However, the PNN was plagued by
biased categorization, with many DST and ROCKAN echoes
mistakenly identified as the NOSHAPE type. Thus, we
eliminated the GLN and PNN architectures from further
consideration.
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Figure 4. Average identification accuracy for the set of signal
processing and neural network combinations when the binaural
receiver axis alignment was parallel (MSI-P) and skewed (MSI-S).
Error bars are ±1 sd.

3.3. Evaluation of receive axis alignment and signal
processing schemes

The relative utility of the five signal processing schemes
(MONO, BEAM, BOTH, DELTA, VOTES) and binaural
receiver axis alignments (MSI-P, MSI-S) were tested using
only the BPN and LVQ architectures. Separate networks
were created for each combination of signal processing and
receiver configuration. The networks were trained using the
ten standardized learning sets and accuracy was tested across
the ten standardized generalization sets.

For the VOTES scheme, two networks were trained,
one for the left channel (‘left ear’) and one for the right
(‘right ear’). For each echo in the generalization set, the
object category decisions for the left and right were compared.
The confusion matrix was compiled using only those echoes
for which agreement was observed for both channels, and
the ‘per cent binaural agreement’ also was computed. For
the MSI-P receiver configuration, binaural agreement for the
BPN was 61.3%. Thus, 61.3% of the echoes were included
in the accuracy, sensitivity and bias calculations. Binaural
agreement was 75.1% for the LVQ networks. For the MSI-S
configuration, binaural agreement for the BPN was 58.2% and
79.9% for the LVQ networks.

To obtain an overview of the relative accuracy of the
networks, the overall per cent correct was computed for each.
The per cent corrects were averaged over the ten data sets, and
are presented in figure 4. All signal processing combinations
resulted in above-chance identification accuracy (chance for
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five target categories is 20%). Manipulation of binaural
receiver axis alignment had a negligible effect on identification
(ID) accuracy, with mean accuracy of 79.2% correct for
MSI-P and 77.2% for MSI-S. However, the most obvious
effect is the interaction between signal processing schemes
and neural network type, most notably the highly variable,
poor performance of the BPN with DELTA processing. A two-
way ANOVA (5 DSP schemes × 2 ANN types + interaction)
supports these observations, F(9190) = 276.28, p < 0.01, with
interaction and both main effects significant. After excluding
the DELTA signal processing scheme, the LVQ slightly
outperformed the BPN (mean% correct = 86.4 versus 80.1,
respectively). The variability in ID accuracy introduced by
the different signal processing schemes was more significant,
with the MONO scheme having the lowest mean% correct
and VOTES the highest. Duncan’s multiple range post hoc
test (α = 0.01) revealed that the identification accuracy for
the VOTES and MONO schemes were significantly different,
but that BEAM and BOTH were not. The VOTES scheme,
however, benefited from error reduction by elimination of
samples (40% in the case of the BPN × MSI-S combination)
when left and right channel IDs did not match. Given
the results, we did not further analyse the MSI-S receiver
alignment data, nor the DELTA and VOTES signal processing
schemes.

3.4. Final evaluations

3.4.1. Comparison of ID accuracy across object type. We
retained the MSI-P data, and conducted a final evaluation of the
BEAM, BOTH and the MONO benchmark signal processing
schemes. For each combination of signal processing and
neural network, the confusion matrices for the ten standardized
data sets were pooled, from which estimates of identification
sensitivity (d ′) and bias (β) were computed (presented in
table 5). Differences between object types are evident, but only
subtle differences were revealed between signal processing
schemes (DSP) and neural network architectures (ANN).
LVQ sensitivity always was slightly greater than that of the
BPN. When the results were collapsed across target types,
a two-way ANOVA (3 DSP schemes × 2 network types)
revealed no interaction and no effect of DSP scheme. After
further collapsing across DSP scheme, a t-test confirmed the
significant effect of ANN on sensitivity (t(298) = 20.54,
p < 0.01), with LVQ more sensitive than BPN. Qualitatively,
the lowest mean sensitivity (d ′ = 2.584) was obtained for the
combination of monaural DSP (MONO) and backpropagation
(BPN), and the highest sensitivity (d ′ = 3.249) was obtained
using binaural beam-formed DSP (BEAM) and learning vector
quantization (LVQ).

3.4.2. Accuracy across orientations for the aspect-dependent
objects. Identification of the two aspect-dependent objects
(DST and ROCKAN) was extremely accurate in spite of the
disparity in the echoes across 180◦ of aspect change and
large jumps in aspect angle (see figure 2). Identification
accuracy for each aspect angle is presented as a function
of signal processing and neural network in figure 5. The

Table 5. Generalization accuracy (p(H), p(FA)), sensitivity (d ′) and
bias (β) for each object type. Signal processing (DSP) and network
architecture (ANN) are contrasted.

Object DSP ANN p(H) p(FA) d ′ β

NOSHAPE MONO BPN 0.644 0.085 1.743 0.874
NOSHAPE MONO LVQ 0.791 0.077 2.234 0.690
NOSHAPE BEAM BPN 0.647 0.099 1.665 0.758
NOSHAPE BEAM LVQ 0.825 0.066 2.442 0.701
NOSHAPE BOTH BPN 0.672 0.090 1.784 0.800
NOSHAPE BOTH LVQ 0.788 0.076 2.232 0.707
MANTA MONO BPN 0.952 0.024 3.637 0.553
MANTA MONO LVQ 0.967 0.007 4.288 1.333
MANTA BEAM BPN 0.969 0.020 3.298 0.360
MANTA BEAM LVQ 0.981 0.004 4.758 1.441
MANTA BOTH BPN 0.959 0.023 3.735 0.485
MANTA BOTH LVQ 0.965 0.003 4.525 2.018
PDM2 MONO BPN 0.926 0.041 3.185 0.470
PDM2 MONO LVQ 0.943 0.018 3.673 0.935
PDM2 BEAM BPN 0.937 0.033 3.365 0.512
PDM2 BEAM LVQ 0.956 0.013 3.947 1.040
PDM2 BOTH BPN 0.938 0.039 3.302 0.359
PDM2 BOTH LVQ 0.945 0.015 3.776 1.089
DST MONO BPN 0.779 0.079 2.176 0.698
DST MONO LVQ 0.811 0.073 2.336 0.666
DST BEAM BPN 0.767 0.068 2.225 0.850
DST BEAM LVQ 0.821 0.065 2.434 0.730
DST BOTH BPN 0.775 0.068 2.251 0.831
DST BOTH LVQ 0.811 0.083 2.270 0.572
ROCKAN MONO BPN 0.783 0.086 2.146 0.624
ROCKAN MONO LVQ 0.817 0.070 2.381 0.679
ROCKAN BEAM BPN 0.789 0.099 2.088 0.505
ROCKAN BEAM LVQ 0.851 0.068 2.530 0.566
ROCKAN BOTH BPN 0.793 0.082 2.208 0.634
ROCKAN BOTH LVQ 0.823 0.070 2.404 0.663

BEAM and BOTH schemes outperformed MONO for both
targets. Additionally, LVQ outperformed BPN, especially for
orientations of 30◦, 90◦ and 120◦, consistent with the results
above where all object types were pooled.

3.4.3. Generalization to novel dolphin data. Using the
most accurate signal processing combination (BEAM-LVQ),
a second test of generalization accuracy was conducted that
contrasted TOD’s results with ROC estimates that summarize
ID accuracy of HEP’s echo data set (table 6). Recall that
the BEAM-ANN system was trained with TOD’s data, thus
here we have a first test of generalization across ‘sonar
sources’ (the two dolphins). The data clearly demonstrate that
the BEAM-LVQ processing scheme could classify MANTA
and PDM2 echoes generated by HEP. However, sensitivity
to the NOSHAPE condition and aspect-dependent DST and
ROCKAN echoes was low, and bias suggests a great proportion
of false alarms to the aspect-independent MANTA and PDM2
categories.

4. Discussion

The development of a binaural dolphin biomimetic sonar
receiver produced data that were used to study signal
processing methods for object identification. Echo spectra
from four metallic objects proud on the ocean floor and a

48



Identifying objects with a biomimetic sonar

DST - MONO

Aspect (Degrees)

ID
 A

cc
ur

ac
y 

(%
 C

or
re

ct
)

20

40

60

80

100

0 30 90 120 180

DST - BEAM

Aspect (Degrees)

ID
 A

cc
ur

ac
y 

(%
 C

or
re

ct
)

20

40

60

80

100

0 30 90 120 180

DST - BOTH

Aspect (Degrees)

ID
 A

cc
ur

ac
y 

(%
 C

or
re

ct
)

20

40

60

80

100

0 30 90 120 180

ROCKAN - MONO

Aspect (Degrees)

ID
 A

cc
ur

ac
y 

(%
 C

or
re

ct
)

20

40

60

80

100

0 30 90 120 180

ROCKAN - BEAM

Aspect (Degrees)

ID
 A

cc
ur

ac
y 

(%
 C

or
re

ct
)

20

40

60

80

100

0 30 90 120 180

ROCKAN - BOTH

Aspect (Degrees)

ID
 A

cc
ur

ac
y 

(%
 C

or
re

ct
)

20

40

60

80

100

0 30 90 120 180

Figure 5. Average identification accuracy for the DST (left panels) and ROCKAN (right panels) at five aspect angles (+1 sd). Performance
of the BPN and LVQ networks is contrasted across the MONO, BEAM and BOTH signal processing schemes. Results from BPN are in
black and LVQ in gray.

Table 6. Generalization sensitivity (d ′) and bias (β) for the BEAM
processing and LVQ network, contrasting dolphin sources and
broken out by object type.

Dolphin

Object type TOD (d ′ and (β)) HEP (d ′ and (β))

NOSHAPE 2.442 (0.701) 0.217 (0.083)
MANTA 4.758 (1.441) 2.843 (2.099)
PDM2 3.947 (1.040) 2.537 (2.048)
DST 2.434 (0.729) 0.374 (0.241)
ROCKAN 2.529 (0.566) 0.426 (0.118)

no-object, substrate-only condition were classified. Accuracy
was evaluated over two receive array configurations, four
neural network architectures and five signal processing
schemes. All signal processing combinations resulted in
above-chance identification accuracy. The horizontal axes
of the binaural receive array beams were either parallel
or diverged 10◦. This manipulation did not significantly
affect object identification accuracy. The four neural
networks included standard parametric backpropagation
(BPN) and nonparametric learning vector quantization (LVQ)
architectures, along with genetic learning (GLN) and
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probabilistic (PNN) network architectures. The GLN was
inaccurate and inefficient. The PNN was about as accurate
on average as LVQ, but was characterized by high bias.
LVQ was consistently the most accurate network across all
signal processing schemes (86% correct across all objects
and signal processing schemes), but BPN was also accurate
(80% correct).

The processing schemes included four methods that
capitalized on the binaural data, plus a monaural benchmark
process (MONO). Of these schemes, a differencing process
(subtraction of spectra, DELTA) resulted in lowest accuracy,
and a voting process that compared identification at each
‘ear’ independently (VOTES) resulted in the highest accuracy.
However, the voting process also resulted in disagreement on,
and thus exclusion of, a substantial portion of the backscatter
samples. If emission of sonar pings does not have a cost (i.e.,
can occur ad libitum), then the VOTES processing scheme is
optimal. The remaining binaural processes of simple beam-
forming (BEAM) or concatenation of spectra from both ‘ears’
(BOTH) outperformed the monaural benchmark, with higher
sensitivity and lower bias. Identification of the two aspect-
dependent objects (DST and ROCKAN) was accurate, given
the disparity in the echoes across 180◦ of aspect change and
large jumps in aspect angle. The binaural processing schemes
(BEAM and BOTH) outperformed the monaural benchmark
for both objects. Additionally, the LVQ network outperformed
the BPN, especially for orientations of 30◦, 90◦ and 120◦.

For the present data, the nonparametric LVQ network and
binaural BEAM signal processing scheme resulted in highest
object identification accuracy without exclusion of backscatter
samples. Moreover, generalization tests revealed that the
BEAM-LVQ processing scheme could classify MANTA
and PDM2 echoes generated by the second dolphin, HEP.
However, sensitivity to the NOSHAPE condition and aspect-
dependent DST and ROCKAN echoes was low, and bias
suggests a great proportion of false alarms to the MANTA
and PDM2 categories. Thus, the echo spectral features that
were suitable for good identification of objects ensonified by
the dolphin TOD did not appear to be readily available in
the echoes generated by the dolphin HEP. This could have
been caused by spectral differences in the dolphins’ biosonar
signals, or by the lower overall source level of HEP’s signals.

The application of a binaural receive array presents
a significant advancement in bio-inspired signal processing
research for object identification. Additionally, although the
application of neural networks to sonar pattern recognition
is not new, the questions posed in this study were
addressed with complex, real-world data. For example,
many biosonar classification studies focused on objects
ensonified in the free-field [17–22]. The current study used
backscatter generated from objects placed on the bottom,
which substantially degrades the acoustic backscatter by
convolution of target echo with substrate reverberation. The
nonstationary nature of free-field ambient noise in earlier
studies had acoustic characteristics that were substantially
separable from the coherent echoes generated by the
objects. The object echoes analysed here were reverberation-
limited, thus the acoustic characteristics of the echoes

are very similar to the characteristics of the interfering
backscatter. The ANN architectures used here were
generic commercial off-the-shelf architectures designed for
generalized pattern classification, rather than algorithms
engineered specifically for identification of ensonified bottom
objects using specifically engineered sonar signals. In
a nutshell, identification of ensonified targets independent
of aspect using acoustic properties of reverberation-limited
echoes is a substantial leap in what has been expected of
generic algorithms in previous studies (e.g., [17–22]).

The advantages of multi-element signal processing are
demonstrated in this evaluation. The binaural BEAM
processing scheme is computationally inexpensive and
resulted in improvement of identification accuracy over the
monaural scheme. Previous work [36] and the current data
suggest that the nonparametric LVQ classifier will outperform
the parametric BPN, and identification accuracy likely will
improve above the 86% observed here as the number of
orientations that are represented are increased. However,
very-high-resolution short-range sonars may generate highly
aspect-dependent backscatter, with acoustic characteristics
that may be indicative of non-diagnostic features of the
objects (such as a seam or lip). True integration of echoes
from multiple orientations does not occur within the LVQ
processing scheme, and thus we remain confident that object
identification will be optimized through application of sonar
imaging techniques [37, 38].
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