
High force coefficients are required to account for hovering
flight in animals ranging from small insects (e.g. Ellington,
1984a–f) to medium-sized birds (Norberg, 1975) and bats
(Norberg, 1976). Ellington et al. (1996) showed leading-edge
vortices to be present over flapping real and model hawkmoth
wings. These leading-edge vortices, created by dynamic stall
and maintained by spanwise flow, contribute significantly to
lift production in slow-flying hawkmoths. The accompanying
paper (Usherwood and Ellington, 2002) shows this
phenomenon, and high force coefficients, to be a stable
aerodynamic characteristic of revolving model moth wings.
The present paper aims to determine how robust this
characteristic is to variations in wing design and Reynolds
number. Model hawkmoth wings with a range of aspect ratio
and real and model wings from a number of ‘key species’ are
tested.

Aspect ratio

The basic planiform shape of many animal wings may be
characterized in simple terms (Weis-Fogh, 1973; Ellington,
1984b). One key variable is the aspect ratio AR of the wing:

AR= 4R2/S, (1)

where S is the total wing area and R is the single wing length.
Most flying animals are functionally two-winged; many four-
winged insects link fore- and hindwings, and, for these
morphological parameters, the linked wings are treated as

one. Standard hawkmoth planforms (Usherwood and
Ellington, 2002), with their chords scaled by ×0.4, ×0.6,
×0.8, ×1 and ×1.4, are tested in this study, resulting in five
wing designs with constant wing length and an aspect ratio
range of 4.53–15.84. Scaling the chord produces reasonably
insect-wing-like planforms with the variation of a single
parameter.

Insects have wings of AR ranging from 2.8 (butterflies,
Dudley and DeVries, 1990) to 10.9 (craneflies, Ellington,
1984b). Vertebrates capable of hovering have wings ranging
in AR from 4.4 (pied flycatcher, Norberg, 1975) to 8.2
(hummingbirds, Wells, 1993). The aspect ratios of the wings
in this study range from 4.53 to 15.84, and angles of incidence
greater than 90 ° are tested, so our results are relevant to studies
of animals that hover using a vertical stroke plane or swim
using drag-based propulsion.

Conventional propellers and wind turbines revolve, but
delayed stall and high force coefficients typically exist only at
the wing (rotor) bases [Himmelskamp in Schlichting, 1968
(propellers); Graham, 1992 (wind turbines)]. Otherwise, flow
over high-ARpropellers and turbines at high angles of incidence
stalls conventionally, and blade-element analyses using
coefficients derived from steady, two-dimensional flow
conditions are effective. So, it is reasonable to expect that the
high-lift mechanisms described by Usherwood and Ellington
(2002) for wings of AR=6.34 might gradually or suddenly
decline with increasing aspect ratio.
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High force coefficients, similar to those observed for
revolving model hawkmoth wings in the accompanying
paper (for which steady leading-edge vortices are directly
observed), are apparent for revolving model (mayfly,
bumblebee and quail) and real (quail) animal wings
ranging in Reynolds number (Re) from 1100 to 26 000.
Results for bumblebee and hawkmoth wings agree with
those published previously for Drosophila (Re≈200). The
effect of aspect ratio is also tested with planforms based on
hawkmoth wings adjusted to aspect ratios ranging from

4.53 to 15.84 and is shown to be relatively minor,
especially at angles of incidence below 50 °.

The normal force relationship introduced in the
accompanying paper is supported for wings over a large
range of aspect ratios in both ‘early’ and ‘steady’
conditions; local induced velocities appear not to affect the
relationship.
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The implications of Reynolds number for flight

Reynolds number Rehas a large impact on the behaviour of
fluids flowing past an object; Vogel (1981) presents the
concepts clearly in a biological context. It is therefore
reasonable to expect Re to have a similar bearing on the flow
(and so lift and drag) acting on wings. Indeed, it is frequently
supposed that many of the unexpected phenomena associated
with insect flight may be accounted for by the low values of
Reat which they operate. However, predictions based on Re
arguments are not always founded; while it is true that viscous
drag forces are higher for smaller animals, it is not true that
the very small and ‘fringe-winged’ insects (Re<28) ‘row’
through the air using drag-based mechanisms (Ellington,
1984a). Indeed, the vertical stroke plane associated with drag-
based weight support is surprisingly seen in larger insects
(butterflies) at Revalues of approximately 2800 (Maxworthy,
1981; Ellington, 1984a; Sunada et al., 1993).

So, at this stage, it is unclear whether insects, small, and
even large, vertebrates operate in the same flow regime; it is
not known whether there are significant qualitative differences
in flow analogous to the transition between laminar and
turbulent conditions. Is there a subtle gradient from one regime
to another (this does not appear likely given the properties
of normal laminar/turbulent transitions)? Or is there a
biologically significant threshold above (or below) which
certain aerodynamic mechanisms are unable to operate? If so,
where are these boundaries?

Key species

To gain more information of biological interest, this study
investigates several key species for which the appropriate
parameters are known. Bees are of particular interest as they
show a considerable size range both within a species (between
different castes of bumblebee) and among related genera (e.g.
the Euglossini or orchid bees). A bumblebee wing was
therefore tested to provide information on the aerodynamic
properties of wings in revolution for an insect for which there
is a great deal of morphological, kinematic and energetic data
(Dudley and Ellington, 1990a,b; Cooper, 1993) and which
should also be applicable to studies of euglossine bees (Casey
and Ellington, 1989; Dudley, 1995; Dudley and Chai, 1996).

To determine the steady aerodynamic performance of wings
in revolution at low and high Re, a ‘mini-spinner’ was built
covering the range of Re from 1100 to 26 000. The model
animals chosen for these extremes were the mayfly Ephemera
vulgataand blue-breasted quail Coturnix chinensis, for which
fresh wings were available. The ‘mini-spinner’, a smaller and
simplified version of the more elaborate propeller described in
Usherwood and Ellington (2002), proved a robust and effective
tool. It also allowed the use of real bird wings over a limited
size range, so both real and model quail wings were tested.

Inferring the presence of a leading-edge vortex

Smoke observations for simple model hawkmoth wings
by Usherwood and Ellington (2002) supported the finding
(Ellington et al., 1996) that the mechanism for high lift is a

leading-edge vortex. However, wing speeds and designs in the
present study precluded such observations. As shown in
Usherwood and Ellington (2002), flow separation can
nevertheless be inferred if the resultant force is approximately
normal to the wing surface.

Materials and methods
Force measurements were made using two experimental

propellers. The larger design, described by Usherwood and
Ellington (2002), allows ‘early’ (from the first half-revolution)
and ‘steady’ vertical and horizontal forces to be measured
using foil strain gauges. The smaller, much simpler, design
could only measure ‘steady’ forces, but could do so over a
much larger speed range.

Vertical and horizontal force coefficients were derived from
measured vertical forces and torques as described by
Usherwood and Ellington (2002). Following Usherwood and
Ellington (2002), the term ‘propeller coefficient’ is used
to distinguish force coefficients derived from propeller
experiments.

Large propeller experiments

Unless otherwise stated, all aspects of the experimental
method for the large propeller experiments were identical to
those described by Usherwood and Ellington (2002). Methods
of wing construction, force measurement and data processing
were suitable for a limited Re range, appropriate for
hawkmoths and queen bumblebees.

Aspect ratio

The standard hawkmoth planform was adapted to produce
wing pairs with a range of five aspect ratios (Fig. 1A): all wings
were thin and flat. The wing length in every case, including the
offset due to the method of attachment to the propeller head (see
Usherwood and Ellington, 2002), was 556 mm, and the relevant
second, r̂2(S), and third, r̂3(S), non-dimensional wing moments
of area remained constant: r̂2(S)=0.547 and r̂3(S)=0.588. Wing
thickness was constrained by the material used, and the angular
velocity was kept constant. The mean wing thickness (relative
to mean chord) and Re (defined using the conventions of
Ellington, 1984f) were therefore confounding variables
(Table 1). The constant angular velocity also resulted in smaller
signal-to-noise ratios for higher-AR (narrower) wings, because
they experienced smaller forces.

Bumblebee

The planform for a bumblebee (Fig. 1B) Bombus terrestris
wing design was taken from a previous study and used to
produce a wing pair as described for the hawkmoth
(Usherwood and Ellington, 2002). Bumblebee B27 was
selected because its aspect ratio and radii for moments of area
were the closest to the population means. Again, the wing
shape was kept constant so that the offset due to the attachment
of the wings to the propeller head changed the wing moments,
as shown in Table 2.

J. R. Usherwood and C. P. Ellington
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The propeller was driven slightly more slowly than for the
hawkmoth tests, at 0.147 Hz, thus reducing the Reynolds
number to 5496, a value appropriate for the largest queen
bumblebees and large euglossines. Further reduction in speed
produced very noisy results because of dominating mechanical
oscillations, while reducing the wing length would have
confounded the effects of the offset, which otherwise was kept
constant for experiments on the large propeller.

Small propeller (‘mini-spinner’) experiments

Fig. 2 shows the basic construction of the ‘mini-spinner’.
It uses the same principle for the measurement of vertical
forces (moments about a knife-blade fulcrum, forming a
‘see-saw’) as used by Usherwood and Ellington (2002)
but different principles for torques. Unsteady force
measurements and flow visualisations are impossible with the
mini-spinner, but the smaller size requires higher frequencies
of revolution for Resimilarity, with the advantage that low-
Re models can be used while minimising the effects of

random air movements; random air movements will be
negligible compared with the flow generated by the wings.
The size and relative stiffness of the mini-spinner also allows
the use of real bird wings. The extremes in Reare represented
by model mayfly forewings and both model and real quail
wings.

Wing design

Model mayfly forewings were based on those from a
26.4 mg male mayfly Ephemera vulgata(Fig. 3A). The
hindwings were not included in the model because they were
small and their orientation during flapping flight was unknown.
The planform was maintained, so the small shift due to the
diameter of the rotor head (of diameter 9 mm, causing an offset
of 4.5 mm) influences the wing moments. Table 2 shows the
resulting wing parameters.

The model mayfly wings were constructed from stiff, thin
(0.15 mm) card glued to 0.57 mm diameter wire running half-
way down the ventral surface of the wing. This resulted in a
wing thickness at the position of mean chord of 5 % of wing
chord.

Geometric angles of attack were set by rotating the wire
wing-stems within the propeller head and measured using a
inclinometer, which achieved an estimated accuracy of ±2 °.
Angles from 0 to 90 ° were used, with 10 ° increments. The
angles of incidence were calculated as in Usherwood and
Ellington (2002).

A 61.6 g blue-breasted quail Coturnix chinensiswas killed
by decapitation as part of another study (Askew et al., 2001).
The right wing (fresh mass 2.29 g) was removed at the base of
the humerus and pinned to dry using hypodermic needles. The
pinned position mimicked a typical mid-downstroke position
determined from the video recordings of ascending flight used
by Askew et al. (2001). Once stiff, the wing was connected
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Fig. 1. Model hawkmoth planforms with a range of aspect ratios (AR)
(A) and bumblebee planform (B). Wing lengths R: model hawkmoth
R=0.5 m; real bumblebee R=12.86 mm; model bumblebee R=0.5 m.

Table 1.Confounded variables with variation in aspect ratio

Wing type Wing thickness Reynolds 
(aspect ratio) (% of wing chord) number

15.84 (very narrow) 3.91 3230
10.56 2.61 4846
7.92 1.96 6461
6.34 (standard) 1.57 8071
4.53 (wide) 1.12 11 295

Table 2.Morphological parameters for real and model wings

Model Real Real Combined Model Real or model 
Bombus bumblebee wing mayfly mayfly real mayfly mayfly Quail quail wing 

B27 with offset forewing hindwing wings forewing wing including offset

R (mm) 12.86 556 13.0 3.9 13.0 54.5 100.1 104.6
AR 6.32 7.13 6.42 5.10 5.77 7.67 4.52 4.93
r̂2(S) 0.541 0.578 0.546 0.572 0.520 0.573 0.522 0.538
r̂3(S) 0.585 0.614 0.588 0.610 0.568 0.609 0.567 0.580

R, wing length; AR, aspect ratio; r̂2(S) and r̂3(S), non-dimensional second and third moments of wing area.
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using four sutures to a rod bent to follow the humerus and
radius/ulna. It was only possible to use a single wing because
a second right wing accurately matching the first was not
available and the dorsal/ventral asymmetry of bird wings
makes use of the left wing inappropriate. To balance the
propeller, the stem of the rod attached to the wing was allowed
to protrude through the propeller head. The wing was only
slightly twisted (maximally 3 °) but was strongly cambered,
particularly at the base. At the ‘elbow’ joint between the
humerus and ulna/radius, the wing depth (including camber
and thickness) was 28.8 % of the chord; at the ‘wrist’, over the
alula base, this value was 24.1 %; half-way between the alula
and wing tip, it was 10 %.

The wing, once attached to the rod, was scanned (Fig. 3B),
and the appropriate moments were calculated. A print-out of
the scanned image was used as a template for a wing model.
The model wing was constructed from stiff, thin (0.3 mm) card
glued to 1.4 mm diameter wire running half-way
down the ventral surface of the wing. This resulted
in a wing thickness at the position of mean chord of
4 % of the chord. The single model wing was
counterbalanced in the same way as the real wing.
Again, the propeller head was considered when
calculating wing moments (Table 2).

Angles of attack α were set by rotating the wire
wing stems within the propeller head and measured
using an inclinometer. The arbitrary ‘representative’
α was taken across the wing chord from the base of
the alula to the tip of the innermost primary. The
angle of incidence α′ was calculated as in
Usherwood and Ellington (2002).

Frequency and Re

A variable power supply was used to drive the
propeller head, using a 22 mm diameter, 12 V
motor (RS) connected to a 24 mm diameter 7.2:1
gearhead. The rotational frequency was varied
using the power supply until it reached 3.3 Hz for
the model mayfly wing pairs, as judged with the
use of a Drelloscop Strob 2009S07 stroboscope.
Rotational frequency was set before and checked
after each test. A rotational frequency of 3.3 Hz
resulted in an Re based on the mean chord
(Ellington, 1984f) of 1100, close to values
estimated from video recordings of mayflies in
ascending flight taken in the field and reasonable
for the parameters described by Brodsky (1973) for
the same species.

The rotational frequency for the quail wing and
model was 12.5 Hz, resulting in an Re of 26 000
based on the mean chord. Askew et al. (2001) have
observed a maximum downstroke angular flapping
velocity ω of 190 ° s–1 for a quail with a wing length
of 95 mm. This corresponds to a maximum Re of
48 000, so 26 000 for the propeller implies that it is
operating in a similar flow regime to the flapping

wing for most of the downstroke. The upstroke has little
aerodynamic effect.

The mini-spinner for low Re: model mayfly wings

Vertical forces

The mini-spinner as shown in Fig. 2A has the motor,
gearbox and propeller head oriented vertically. During steady
revolution, a moment is created about the fulcrum due to the
vertical force and the arm length to the right of the fulcrum.
This is equal and opposite to the moment created by the tension
force applied from a wire connected to the under-hook of a
Mettler BasBal BB240 balance situated directly above, and the
appropriate arm length to the left, of the fulcrum. This
arrangement was calibrated with the repeated application of a
1 g mass to the centre of the propeller head, which resulted in
an imperceptible deflection and produced values consistent
with the geometry of the arrangement and the accuracy of the

J. R. Usherwood and C. P. Ellington
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Fig. 2. The mini-spinner set up for small vertical force (A) and torque (B)
measurements.
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balance. The inherent linearity of the ‘see-saw’ arrangement
was confirmed during set-up and testing. Thereafter, a single
point calibration was sufficient. Five (or 10 at values of α of
particular interest) vertical force measurements were made at
each angle of attack.

Torques

Aerodynamic torques were measured by rotating the motor,
gearbox and propeller head unit to a horizontal orientation as
shown in Fig. 2B. During steady revolution, the moment about
the fulcrum is equal to the aerodynamic torque from the
revolving propeller head and wings. This torque can thus be
calculated given the distance from the fulcrum to the wire
attachment (140 mm) directly below the balance. The same
number of measurements was made as for the vertical forces,
and the aerodynamic effects of the motor head and stings were
determined from tests without wings and removed.

Each vertical force and torque value was the mean of a pair
of runs, starting with the wings in opposite positions. The
measurements taken for each run consisted of a ‘zero’ and a
9 s average after steady revolution had been achieved. This
takes into account any error due to an imbalance between the
wings.

The mini-spinner for high Re: real and model quail wings

Vertical forces

Vertical forces were measured exactly as for the mayfly
wings except that the moments were opposed by a stiff steel
shim on which was glued a pair of strain gauges instead of the
vertical wire leading to the balance: forces were too large and
variable for the balance to provide accurate results. Signals
from the strain gauges were amplified electronically before
being sampled at 50 Hz using a Macintosh Quadra 650.
Vertical force signals were averaged over 50 s. Five values
from 10 paired runs, taking imbalance into account as above,
were found for each angle of attack.

Torques

The forces due to the faster, heavier quail wings were such
that the above method of measuring aerodynamic torques was
impossible without adding large masses to stabilise the beam,
which resulted in excessive loading on the strain-gauge shim.
The torques were high enough, however, to be determined
with sufficient accuracy from the power consumption of the
motor. The current I passing through, and the voltage V
across, the motor were measured five times for each angle of
attack. The electrical power input (IV) is converted into
aerodynamic power by the motor, with certain losses. These
motor losses can be categorised (Electro-Craft Corporation,
1980) as being either speed-sensitive (which covers losses
due to eddy currents, hysteresis, windage, friction, short
circuits and brush contact) or torque-sensitive (winding
resistance). The speed-sensitive components of electrical
losses will be a constant C because a constant rotational
frequency was used. C was determined by measuring the
electrical power required to drive the motor with no wings

attached. The torque-sensitive power loss due to the winding
Pwinding is given by:

Pwinding = I2re, (2)

where re is the resistance of the motor. Tests showed that re

varied only very slightly with the time spent at the maximum
torque, so the internal resistance of the motor did not change
as a result of internal heating. Thus, the value of re taken for
the stationary motor can also be used during revolution.
Subtracting the two power losses from the power input yields
the aerodynamic power Paero required to overcome the
aerodynamic torque on the wings:

Fig. 3. Model and real wing planforms for mayfly (forewing) (A) and
quail (B). Wing lengths R: real mayfly R=13 mm; model mayfly
R=50 mm; model and real quail R=100.1 mm.
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Paero= (IV) – (I2re) – C , (3)

and torque Q is given by:

Q = Paero/Ω , (4)

where Ω is the angular velocity of propeller revolution.

Results
Aspect ratio series

Fig. 4 shows ‘early’ and ‘steady’ results for the hawkmoth
wings over a range of aspect ratios. In each case, the ‘pooled’
data for the flat hawkmoth wings shown in Usherwood and
Ellington (2002) are presented (both ‘early’ and ‘steady’
values) for comparison. The shift between ‘early’ and ‘steady’
values seen at intermediate angles of incidence for the standard
hawkmoth wings is visible for all aspect ratios. The
relationship between both Ch,earlyand Ch,steady(Fig. 4A,C) and
α′ at low angles is very consistent for wings of every AR tested.
However, under both conditions, ARhas a progressively greater
effect at higher α′ . Low-ARwings achieve considerably higher
maximum horizontal force coefficients, peaking at Ch,early=3.4
and Ch,steady=3.5 near α′=90 °, while the highest-AR wings
achieve maximum horizontal force coefficients of only 2.5
(Fig. 5).

The relationship between both Cv,early and Cv,steady

(Fig. 4B,D) and α′ is dependent on AR. While the maximum
values reached, approximately 1.7 for Cv,early and 1.3 for
Cv,steady, are very similar for the entire range of aspect ratios
and occur at similar values of α′ , between 40 and 60 °, the
initial gradients differ significantly. The relationships are

J. R. Usherwood and C. P. Ellington
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Fig. 5. The relationship between maximum horizontal force
coefficient (Ch) (at an angle of attack α of 90 °) and aspect ratio (AR)
for revolving model hawkmoth wings under ‘early’ and ‘steady’
conditions. Error bars show ± 1 S.E.M. (N=4).
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approximately linear between α′=–20 and +20 °. The
gradients dCv/dα′ , with their 95 % confidence intervals
over this range, are given in Fig. 6. Lower-AR wings,
and wings in ‘steady’ revolution, have lower gradients.

Bumblebee results

Fig. 7 shows the results for the Bombuswings. Ch

and Cv, both ‘early’ and ‘steady’, show remarkably few
differences compared with the ‘pooled’ hawkmoth
results from Usherwood and Ellington (2002).

Steady results for range of species

Fig. 8 shows the ‘steady’ force coefficients for the
model mayfly and model and real quail wings derived
from force measurements using the ‘mini-spinner’.
These are plotted with the ‘steady’ coefficients for
Bombus and pooled hawkmoth wings. Slight
differences are visible in the horizontal force
coefficients, with the mayfly showing lower
coefficients (although with high standard errors) and the
quail higher coefficients. The relationship between
Cv,steady and α′ was remarkably consistent over the
whole range of wings tested. All wings achieved
maximum vertical force coefficients well above 1 at
values of α′ between 40 and 60 °.

Deflections were visible in the revolving quail wings, with
the tips of both real and model wings bending backwards,
especially at higher values of α. The values of α′ shown for
the quail wings in Fig. 8 must therefore be considered
approximate and lower than the true values.

Discussion
Steady high-lift mechanisms exist for a wide range of

revolving wings

Force coefficients for a range of AR
Aspect ratio appears to have remarkably little effect on the

force coefficients that can be achieved by revolving wings.
Wings with values of AR from 4.53 to 15.84 produce
indistinguishable maximum vertical force coefficients between
α′=40 ° and 60 ° of 1.70 (‘early’) and 1.30 (‘steady’). There is
no distinct reduction in force coefficient that would be
associated with ‘stall’, at least below α′=65 ° (and so of any
relevance to insects hovering with a horizontal stroke plane),
even for wings of very high AR. Above this angle, however,
low-AR wings achieve higher force coefficients, which are
dominated by Ch. At α=90 °, there is a considerable range in
Ch (Fig. 5): for AR=15.84, Ch,early=2.53 and Ch,steady=2.29; for
AR=4.53, Ch,early=3.42 and Ch,steady=3.52. For the lower-AR
wings, these values are well above those predicted for flat
plates in steady translational flow. Ellington (1991) gives an
approximate relationship for the drag coefficient of an infinite
flat plate CD,FP appropriate for Re in the range 102 to 103:

CD,FP= 1.95 + (50/Re) , (5)

where CD,FP should be equivalent to Ch,steadyat α′=90 °. Reis
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Fig. 6. The rate of change of vertical force coefficient (Cv) with angle of
incidence (α′ ), dCv/dα′ for ‘early’ and ‘steady’ conditions from α′=–20 to
+20 ° for model hawkmoth wings with a range of aspect ratios (AR). Bars
show 95 % confidence intervals (N=10). Differences both between high and
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significantly different and average 0.130.

Fig. 7. Horizontal (Ch) (A) and vertical (Cv) (B) force coefficients
under ‘early’ and ‘steady’ conditions for model bumblebee wings
over a range of angles of incidence α′ . Grey lines show ‘early’
(higher) and ‘steady’ (lower) coefficients for standard ‘pooled’
hawkmoth.
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at least several thousand for the wings described here, so the
predicted horizontal force coefficient is very close to 2 and
varies only slightly over the range of Recovered by the wings.
Furthermore, the three-dimensional effect of air ‘sneaking’
around the ends of the wing instead of flowing around its
width would lead to even lower values of Ch (Hoerner, 1958)
and incorrectly predict the direction of the relationship
between maximum Ch and AR. The cause of the observed
relationship is uncertain, but analogy with the vortices
characteristically found over delta wings at high angles of
incidence suggests that interference between leading- and
trailing-edge vortices at high α′ may be more significant for
wings with higher AR.

These results suggest that blade-element analyses of
revolving, perpendicular ‘wings’ may be in serious error if
conventional, steady, two-dimensional force coefficients are
used. In particular, older analyses of pectoral-fin swimming in
fish (Blake, 1978) may have to be re-assessed.

Bumblebee force coefficients

The measurements made on the bumblebee wings are near
the lower limits of the large propeller rig. However, all
propeller coefficients (Ch,early, Ch,steady, Cv,early and Cv,steady)
agree so well with the values found for hawkmoth wings that
little comment is possible, other than to observe that similar

aerodynamic mechanisms are almost certainly available to
bumblebees and hawkmoths.

Steady force coefficients from mayfly to quail

Remarkably consistent, high force coefficients are
achieved for simple, thin, flat model wings in steady
revolution at Re from 1100 to 26 000; the real quail wing,
with thickness and camber, not to mention feathers, produces
very similar force coefficients. Drovetski (1996) gives polar
diagrams from 0 to 25 ° for simple model galliform (game
bird) wings. The video recordings of Askew et al. (2001)
(and, consequently, the wing and wing model used in this
study) do not show the trailing-edge notch described by
Drovetski (1996); it appears that such a notch is present only
in gliding flight or is an artefact of pinning the wings in a
fully extended position. The maximum lift coefficients cited
by Drovetski (1996) for wing models ranging from California
quail Callipepla californica to turkey Meleagris gallopavo
were between 0.61 and 0.80; it seems that some aspect of
revolution may as much as double the vertical force
coefficients. Values for blackbird Turdus merula, house
sparrow Passer domesticusand mallard Anas platyrhynchus
(Nachtigall and Kempf, 1971) range from 0.9 to 1.1, higher
than for the galliforms of Drovetski (1996) but still
considerably lower than those for revolving quail wings.
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High force coefficients as a robust phenomenon

The aerodynamic phenomenon resulting in high force
coefficients, presumably associated with the creation and
maintenance of leading-edge vortices, appears remarkably
robust. Some of the force measurements on the flapping
Drosophilamodel of Dickinson et al. (1999) are equivalent to
the ‘early’ measurements described here, and their simple
harmonic relationships are shown in Fig. 9 together with the
‘early’ results for the hawkmoth AR range. The Drosophila
model shows a higher minimum horizontal force coefficient
at low values of α because of relatively larger viscous forces.
However, at higher values of α′ , there is very good agreement
in both Ch and Cv with the values shown for hawkmoth
planforms. If it is reasonable to suppose that shifts from
‘early’ to ‘steady’ conditions are relatively constant
throughout the Re range, then it appears that similar force
coefficients are possible from Drosophila (Re≈200) to quail
(Re≈26 000). If the mechanism for these high force
coefficients is indeed the leading-edge vortex, then the
insensitivity to Re is not as surprising as it may appear.
Leading-edge vortices over sharp, thin delta wings are
effective lift-producers for slow paper aeroplanes, Concorde
and the space shuttle; a vast range of Re.

Further implications of aspect ratio

dCv/dα′ and aspect ratio

Fig. 6 shows relationships between aspect ratio and the rate
of change of vertical force coefficient with angle of incidence,
dCv/dα′ . The relationships for both ‘early’ and ‘steady’
conditions are very similar: the gradients for regression lines
through each plot on Fig. 6 are not significantly different. This
phenomenon is well known for translating wings and is due

to the larger downwash of lower-AR wings, which produce
greater forces for the same wing length. This results in a
greater downwash angle ε, and so a smaller increase in
‘effective angle of incidence’ (αr′=α′–ε) for a given increase
in α′ . The non-zero slope of the dCv/dα′ relationship for
‘early’ conditions shows that the ‘early’ induced downwash,
while small, is not negligible; even before development of the
propeller wake, the tip vortex appears to produce a downwash
analogous to that for wings in translation. Ch,earlyand Cv,early

therefore provide slight underestimates for CD,pro and CL (see
Usherwood and Ellington, 2002). However, the significance
of this effect is minor compared with the surprisingly similar
magnitudes of force coefficients for the AR range discussed
above.

Implications of aspect ratio for wing design

The similarity in aerodynamic characteristics of wings over
a considerable range of aspect ratio for α′<65 ° suggests that,
all other factors being equal, lower-AR wings should require
less power to support body weight than higher-AR wings. For
a given wing length R and wingbeat frequency n, the vertical
force Fv during hovering is:

Fv ∝ Sn2 , (6)

and the aerodynamic power Paero is:

Paero∝ Sn3 (7)

because lift is related to area and the square of wing velocity,
while power is proportional to wing area and the cube of wing
velocity. The power required to support a given body weight
is therefore proportional to n (∝ Paero/Fv). The frequency and
hence the power can be reduced by increasing wing area S
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(equation 6) which, for a given wing length, is equivalent to
decreasing the AR (equation 1):

(Paero/Fv ) ∝ n ∝ √AR . (8)

Clearly, many other aspects influence wing design in insects:
aspect ratios may be determined by inertial power or weight
considerations or by the energetics of unsteady or forward-flight
aerodynamics. Also, manoeuvrability, visibility, protection
when folded and developmental cost may all push wing design
towards non-energetically adaptive optima. However, the above
relationships do suggest a possible pressure towards broader
wings in insects for which efficient hovering with a horizontal
stroke plane is of selective significance.

The energetic advantage to butterflies of low-AR wings is
clearer. The large cabbage white Pieris brassicaehovers with
a vertical stroke plane (Ellington 1984a), which means that
horizontal force coefficients as defined here act in the vertical
plane. While use is made of unsteady mechanisms such as the
‘clap and fling’, the benefits due to a low-AR wing can be seen
by considering steady propeller coefficients. The lowest-AR
wing tested had a maximum horizontal force coefficient of
3.52, 1.4 times that of the highest-AR wing. Thus, lower-AR
wings produce larger forces because of their larger areas and
because of their higher force coefficients. This should allow
the butterfly to flap disproportionately slowly, lowering the
power requirements for hovering.

Conversion of propeller coefficients into CD,pro and CL

Fig. 10 shows the results for the AR range of the three
transformations described in Usherwood and Ellington (2002)
that convert Ch,steady and Cv,steady into CD,pro and CL,
respectively. At values of α′ greater than 50 °, the models
progressively underestimate CL with increasing AR . However,
both large-angle models give good fits to Ch,early and Cv,early

for values of α′ below 50 °, which are more realistic for
hovering insects.

The ‘normal force relationship’ is unaffected by induced
downwash

The ‘normal force relationship’ between Ch, Cv and α
described for standard hawkmoth wings in Usherwood and
Ellington (2002) is also accurate at very low Re values
(Dickinson et al., 1999) at high angles of attack. The
effectiveness of the model for different AR, and its insensitivity
to induced velocities, is shown in Fig. 11: the observed
resultant force coefficient CR can be accurately divided into Ch

and Cv by:
Ch = CRsinα (9)

and
Cv = CRcosα (10)

respectively. The fits are very good, even at very high α′ ,
despite the various induced air velocities associated with the
range of AR, and ‘early’ and ‘steady’ conditions.

In conclusion, the aerodynamics of revolving wings appears
quite insensitive to variations in both wing morphology and

kinematics: force coefficients for a range of model insect wings
and for the wing of one small bird closely match those
previously found for Drosophila wings. In addition, aspect
ratio has remarkably little influence on aerodynamic force
coefficients, at least at low-to-moderate angles of attack.

List of symbols
AR aspect ratio
C sum of speed-sensitive components of electrical 

power loss
CD,FP drag coefficient for a flat plate in perpendicular 

flow
CD,pro profile drag coefficient
Ch horizontal force coefficient
CL lift coefficient
CR resultant force coefficient
Cv vertical force coefficient
Fv vertical force
I electrical current
n wingbeat frequency
Paero aerodynamic power
Pwinding power due to winding in electric motor
Q torque
r̂2(S) non-dimensional second moment of area
r̂3(S) non-dimensional third moment of area
re electrical resistance
R wing length
Re Reynolds number
S area of a pair of wings
V voltage
α geometric angle of attack
α′ angle of incidence
αr′ effective angle of incidence
ε downwash angle
ω downwash angular flapping velocity
Ω angular velocity of the propeller

Subscripts

early before propeller wake has developed (e.g. Cv,early)
steady after propeller wake has developed (e.g. Cv,steady)

The help of Ian Goldstone and Steve Ellis and the support
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