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Abstract
We perform numerical simulations of the swimming of a three-linkage articulated system in a
moderately viscous regime. The computational methodology focuses on the creation, diffusion
and transport of vorticity from the surface of the bodies into the fluid. The simulations are
dynamically coupled, in that the motion of the three-linkage swimmer is computed
simultaneously with the dynamics of the fluid. The novel coupling scheme presented in this
work is the first to exploit the relationship between vorticity creation and body dynamics. The
locomotion of the system, when subject to undulatory inputs of the hinges, is computed at
Reynolds numbers of 200 and 1000. It is found that the forward swimming speed increases
with the Reynolds number, and that in both cases the swimming is slower than in an inviscid
medium. The vortex shedding is examined, and found to exhibit behavior consistent with
experimental flow visualizations of fish.

1. Introduction

The undulatory mode of locomotion predominates in aquatic
organisms over an enormous range of Reynolds numbers, from
the flagellar propulsion of spermatozoa to the carangiform
mechanics of vertebrate fish and aquatic mammals. An
ostensible reason for the prevalence of this mode is its
effectiveness when either resistive (viscous) or reactive
(inertial) forces are used in the lateral pushes to achieve
forward motion. Less well understood are the interactive
roles of viscous and inertial forces in moderate Reynolds
number locomotion. Lighthill [12] hypothesized that the
thrust-producing mechanism is primarily reactive, and based
his elongated body theory on the inertial force produced by
the added mass. Viscosity was deemed important only as
a contributor to drag, which was estimated from limp fish.
A recent investigation of inviscid swimming by Kanso et al
[9] has clearly shown the potential for net displacement
with reliance on inertial forces alone. Using particle image
velocimetry of swimming fish, Wolfgang et al [17] revealed

that vortical structures shed over the length of the body
may be actively manipulated to improve the swimming
efficiency. Therefore, more work is necessary to clarify the
role of vorticity, in order to exploit it in biologically inspired
technology.

In this work, numerical simulations conducted with
the viscous vortex particle method (VVPM) [6] are used
to compute the fluid dynamics of a simple model for
undulatory locomotion, a two-dimensional system of three
linked ellipses. The high-fidelity method solves the
incompressible Navier–Stokes equations by focusing on the
creation, diffusion and convection of vorticity via the use of
computational particles. A novel extension of the method to
dynamically coupled problems, which exploits the physical
connection between vorticity creation and body motion,
is presented in this work. The motion of the body is
simultaneously solved for with the motion of the fluid,
allowing the exploration of free swimming. Thus, while the
angles between the links are prescribed, the evolution of the
position and orientation of the system is determined during
the course of the simulation.
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The results in this paper are preliminary and are intended
to demonstrate the potential of the VVPM—when coupled
with the body dynamics—for shedding new light on the basic
mechanics of biolocomotion in fluids. This paper represents
an initial step in an ongoing effort to understand wake–
body interactions and motion planning in biolocomotion, and
identify energy efficiency principles in this context. The
central thesis of this work is that these issues can only be
rigorously addressed if the actual self-propulsion of the system
is part of the solution. It has become conventional to analyze
locomotion in fluids by holding the system center of mass
fixed and subjecting it to a constant free stream that balances
the mean drag and thrust. This transformation presumes
a steadiness in the forward locomotion speed; however,
the unsteady component of the motion may be important
[1, 15]. More importantly, there is no clear way to simulate
maneuvering in the body-fixed reference frame. With these
issues in mind, the numerical methodology employed in the
present work has been constructed with special emphasis on
the physical mechanics of fluid–body coupling.

It is important to note that the system analyzed in
this work—three linked rigid bodies—is not meant to be
representative of an actual fish, but instead, an abstraction
of basic biomorphic locomotion. The system is designed
so that its own dynamics are simple to describe, and so
that it can be practically constructed (in future work) for
experimental validation of the computational tools. The same
system was explored in an inviscid medium by Kanso et al
[9], and a robotic system with similar geometry was explored
experimentally by Burdick and co-workers [14].

The basic numerical methodology is described in
section 2. Results of swimming at two different Reynolds
numbers are presented in section 3, and compared with the
inviscid result of Kanso et al [9].

2. Methodology

2.1. Computation of fluid dynamics

An overview of the viscous vortex particle method (VVPM)
is given in this section. For further details, the reader
is referred to previous work [3, 6]. In the VVPM, the
Navier–Stokes equations are discretized by Nv regularized
particles, or blobs, of vorticity. This discretization is in
contrast to more conventional grid-based treatments, such as
finite difference or finite element methods, which interpolate
the field quantities between fixed points or inside polygonal
elements. The particles convect with the local velocity field,
which ensures their automatic adaptivity to the flow. In a sense,
this approach can be thought of as a ‘moving grid’, though
the term ‘grid’ implies a reliance on connectivity between
neighboring computational elements. Though the particles
are initially arranged at the vertices of a Cartesian grid with
uniform spacing �x, the connectivity between grid points is
immaterial.

The time-varying vorticity field is represented in terms of
particles as

ω(x, t) =
Nv∑

p=1

Vpωp(t)ζε(x − xp(t)), (1)

where Vp is the volume of particle p, which, for these two-
dimensional problems, is �x2; xp and ωp are the position and
vorticity associated with particle p, respectively; and ζε is the
regularization kernel, which decays rapidly beyond distance ε

from the center of the particle. Each blob is represented by
a second-order-accurate Gaussian cutoff function, evaluated
efficiently from a look-up table. Equation (1) therefore
represents an interpolation of the vorticity field by overlapping
blobs.

The coupled fluid and body dynamics are solved with a
fractional stepping procedure. In the first half-step of each
time increment, the positions and strengths of the particles
evolve according to the discretized convection and diffusion
operations in the Navier–Stokes equations, respectively:

dxp

dt
= u(xp, t), (2)

dωp

dt
= ν

ε2

Nv∑
q=1

Vq(ωp − ωq)ηε(xp − xq). (3)

The second equation is the particle-discretized version of the
two-dimensional vorticity transport equation, dω/dt = ν∇2ω

[4, 7], in a fluid with kinematic viscosity ν. The summation
operator employs a smooth kernel, η, which weights the
interactions between nearby particles by their separation
distance; a second-order-accurate Gaussian function is used
in this work.

The entire state of an incompressible flow can be
determined from the vorticity and instantaneous body motion.
Each vortex particle induces a circumferential velocity field
around it, and the entire velocity field, u, can be reconstructed
by the composition of all particles’ contributions. The vorticity
contained inside each rigid body, 2�j , and bound to the vortex
sheet lying on each surface, also contributes to this velocity.
Thus, each particle moves under the influence of every other
particle, and a fast adaptive multipole method [2] is used to
accelerate this O

(
N2

v

)
operation to O(Nv). Equations (2)

and (3) are integrated with a fourth-order Runge–Kutta
method.

The no-slip condition is not enforced during this first
half-step, and the resulting vorticity field, ω̃n+1, must be
corrected in order to eliminate the spurious slip velocity. This
correction is carried out in the second half-step by identifying
the equivalent vortex sheet on the surface and fluxing it into
the fluid. The slip velocity is thereby annihilated by this so-
called Lighthill creation algorithm [10, 13]. In practice, the
strength distribution, γ , of the surface vortex sheet is solved
for with a conventional boundary element method. The vortex
sheet is diffused into the fluid with the Neumann boundary
condition −ν∂ω/∂n = γ /�t , where the normal direction is
into the fluid. The method utilizes a semi-analytical scheme
developed by Leonard et al [11], in which the vorticity fluxed
over a time increment [0,�t] from each boundary element is
parceled to adjacent vortex particles. The final vorticity at the
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Figure 1. Schematic diagram of three-linkage fish.

end of the interval is composed of the intermediate field and
the newly diffused one, ωn+1 = ω̃n+1 + �ωn+1.

We can develop expressions for the fluid force and
moment on each body in terms of the surface vorticity and
vorticity flux. The configuration of body j is described by its
centroid position Xj = (Xj , Yj ) and its angle αj , as shown in
figure 1; the respective rates of change are Uj = (Uj , Vj ) and
�j . The fluid force components on body j are expressed as
contour integrals around the perimeter Sj ,

F
f

x,j = µ

∮
Sj

[
(y(s) − Yj )

∂ω

∂n
(s) − ny(s)ω(s)

]
ds

+ ρf Aj U̇j , (4)

F
f

y,j = −µ

∮
Sj

[
(x(s) − Xj)

∂ω

∂n
(s) − nx(s)ω(s)

]
ds

+ ρf Aj V̇j , (5)

where (nx, ny) are the components of the local normal
vector pointing into the fluid, x(s) = (x(s), y(s)) are the
parameterized coordinates of the body contour, Aj is the area
of the body and µ and ρf are the dynamic viscosity and density
of the fluid. The ˙( ) denotes differentiation with respect to
time. The first term in the integral, together with the final
inertial term, accounts for the effect of pressure; the second
term represents the effect of the viscous shear stress. The fluid
dynamic moment on body j about its centroid is

M
f

j = −µ

∮
Sj

{
1

2
|x(s) − Xj )|2 ∂ω

∂n
(s)

− [(x(s) − Xj)ny(s) − (y(s) − Yj )nx(s)]ω(s)

}
ds

− 4µAj�j + 2ρf Bj �̇j , (6)

where Bj is the second area moment of body j . Note
that in all expressions, (4)–(6), the vorticity flux can be
replaced with the vortex sheet strength by using the relation
µ∂ω/∂n = −ρf γ /�t .

2.2. Body dynamics and fluid–body coupling

For coupled problems, as in the free swimming of an
articulated body, the second half-step procedure is carried
out simultaneously with the update of the body configuration.
The rationale for this simultaneous procedure arises from the
physical interdependence of vorticity production and body

motion; the force and moment on the bodies are computed from
the vorticity and vorticity flux, the individual body dynamics
are influenced by this force and moment and the spurious slip
left by the resulting body motion translates into vorticity flux.
Thus, to close out each time increment, we seek the body
motion and vorticity flux that are consistent with each other,
via the reaction force between fluid and body.

Each of the bodies in the linked system obeys Newton’s
second law of motion. However, because of the linkage
constraints, the configuration of the entire system can be
expressed in terms of the configuration of a reference body
(body 1, for instance) and the instantaneous hinge angles,
and the dynamical equations are formulated accordingly. Let
X denote the three-dimensional configuration vector of the
reference body, (X1, Y1, α1)

T , and U the rate of change of
this vector, (U1, V1,�1)

T . The six-dimensional state vector
is denoted by Z = (X1, Y1, α1, U1, V1,�1)

T and � is the
two-dimensional hinge angle vector (θ1, θ2)

T .
In the free swimming problem, the shape of the system

is prescribed, and the resulting changes in position and
orientation are a consequence of the coupled equations of
fluid–body motion. In analogy, a fish can only control its own
shape, through muscular actuation, and has no direct control
over its position in space. Thus, � is a prescribed ‘forcing’
function for the dynamics. The dynamical equations for the
system can be written in s matrix form as

Ẋ = U, (7)

U̇ = M
−1(−Mθ �̈ + J + Ff ), (8)

where M and Mθ are inertial matrices, J contains the
centrifugal terms and Ff the fluid forces and moments:

Ff =
∑

j




F
f

x,j

F
f

y,j

M
f

j − (Yj − Y1)F
f

x,j + (Xj − X1)F
f

y,j


 (9)

We can generically write the dynamical equations (7) and (8)
as

Ż = F(Z, Ż,�, γ, ω). (10)

The arguments on the right-hand side reflect the dependences
of the body dynamics on the state of the fluid, via the force
and moment. The dynamical equations are integrated with
a predictor–corrector scheme; the predictor is a first-order
Adams–Bashforth method and the corrector is a second-order
Adams–Moulton method. At the end of the first half-step
of each time interval the body system has state Zn, the fluid
has vorticity ω̃n+1 and the rate-of-change vector is Fn. We
seek to update these to Zn+1, ωn+1 and Fn+1, respectively, with
zero slip between body and fluid. The procedure is written
algorithmically as follows:

(i) Predictor:

Zn+1
(0) =Zn + �tFn

�⇒ γ(0), �ωn+1
(0)

(11)

Żn+1
(0) = 0 (12)

Fn+1
(0) = F

(
Zn+1

(0) , Żn+1
(0) , �n+1, γ(0), ω̃

n+1 + �ωn+1
(0)

)
. (13)
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(ii) Corrector (mth iteration):

Zn+1
(m+1) =Zn +

1

2
�t

(
Fn + Fn+1

(m)

)

�⇒ γ(m+1), �ωn+1
(m+1)

(14)

Żn+1
(m+1) = Fn+1

(m) (15)

Fn+1
(m+1) =F

(
Zn+1

(m+1), Żn+1
(m+1), �

n+1, γ(m+1), ω̃
n+1 + �ωn+1

(m+1)

)
.

(16)

The corrector step is iterated at most three times. Note
that the double right arrow denotes that the updated body
configuration is used to solve for the spurious vortex sheet
strength and diffuse it into the flow. It should be noted that
no convergence proof exists for this coupling procedure, nor
has one been attempted; however, experience has shown that
the procedure converges numerically. Further details of this
coupling procedure can be found in [5].

3. Results

The focus of this work consists of a linked system of three
identical elliptical bodies, each of length c and aspect ratio 10.
The motions of the rigid links are constrained by virtual hinges
that are a fixed distance, d = 0.2c, from the adjacent ellipses
(see figure 1). The gaps between the bodies are ‘open’, in the
sense that fluid is permitted to traverse the system. These gaps
are left to simplify the numerics. This configuration serves
only as an abstraction of basic undulatory kinematics, and is
not meant as a realistic model of an actual fish. It is noted
that the disjoint bodies do bear some resemblance to a cross-
sectional view of dorsal fins on some fish (e.g. the bluegill
sunfish [8]), but these fins have a three-dimensional structure
that is absent from the present system.

In the present work, the hinge angles of the three-linkage
system are prescribed with

θ1 = �m cos(t − t0), (17)

θ2 = �m cos(t − t0 − π/2), (18)

with �m = 1 and t0 = π . These inputs represent a lowest order
form of undulatory kinematics employed by, for example,
anguilliform fish. The inviscid response of the same system
to these control inputs was analyzed by Kanso et al [9]. In
that work, the absence of dissipation allowed the dynamics
of the fish and inviscid fluid to be treated in a unified fashion
through a single Lagrangian. Such an analysis is not possible
in a viscous flow, where energy is continually dissipated.

The VVPM-computed motion of the three-linkage fish in a
viscous medium is depicted in figure 2. The Reynolds number
of this system, based on the maximum hinge rotation rate and
the chord of each body, �mc2/ν, is 1000. The system propels
itself in a mean direction 20◦ clockwise from the positive
horizontal axis, at a speed of approximately 0.4 body lengths
per undulatory period. The pattern of vortex shedding during

Figure 2. Vorticity field contours at six instants during swimming of
three-linkage fish at Re = 1000. From top to bottom,
t/T = 0, 0.796, 1.592, 2.387, 3.183 and 4. Trajectory of central
body shown for reference at final instant.

the swimming is complicated by the internal edges of the
constituent bodies. Each lateral heave of the fish produces a
small vortex dipole on the opposite side. These dipoles are
reabsorbed by the boundary layer along the posterior portion
of the fish; the same is true for vorticity shed from the leading
edge of the fish.

The pitching and heaving tail of the fish produces a
wake pattern of vortices of alternating sign. The pattern
configuration is reminiscent of a reverse Karman vortex street,
which has been observed in the wakes of fish and robotic
swimmers [16]. However, this canonical wake is more clearly
apparent when the amplitude of the tail motion is large, as in
the carangiform mechanics of fish such as trout.

The effectiveness of these mechanics for achieving
forward locomotion depends on the viscosity in the
surrounding fluid. This is clearly apparent in figure 3, which
depicts the trajectories of the central body of the fish after
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Re = 200

Re = 1000

Inviscid

Figure 3. Vorticity field and trajectories of three-linkage fish after
four undulation cycles, at two different Reynolds numbers,
compared with the inviscid trajectory of Kanso et al [9].

four undulatory cycles at two different Reynolds numbers; the
trajectory of the inviscid swimmer, computed by Kanso et al
[9], is included for reference. At the smaller Reynolds number,
the fish swims approximately half as far as in the less viscous
case. Furthermore, the wake vortices are more tightly bunched,
since less distance is traveled between shedding instants. The
inviscid swimmer travels approximately 0.7 body lengths per
undulatory cycle, nearly 2/3 faster than the highest Reynolds
number case shown.

A question naturally arises from this analysis: is the speed
of locomotion fastest for the inviscid swimmer? By Kelvin’s
minimum-energy theorem, the fish must exert the least amount
of work in the inviscid case. However, this does not, in itself,
imply that viscous swimmers must necessarily swim slower.
Another consequence of inviscid mechanics is that the fluid
and body motion cease immediately when the control inputs
are impulsively stopped. Viscous flows, on the other hand, are
subject to ‘drift,’ so the residual vorticity in the fluid can lead
to motion in the fluid–body system even after the swimmer
has stopped exertion. That is, energy can be usefully extracted
from the vortical flow. Thus, it is possible that the three-linkage
fish may swim faster than the inviscid case in a medium that is
less viscous than the ones considered here. We are currently
investigating this.

It is interesting to examine the differences in wake
topology between a free swimming fish and one that is ‘pulled’
at an arbitrary velocity. This comparison is shown in figure 4,
which depicts the instantaneous streamline patterns for two
cases: the first is the free swimmer at Re = 1000; the second
corresponds to a fish with a prescribed motion (at Re = 200)
adopted from the inviscid trajectory calculated by Kanso et al
[9]. In the free swimming case, the wake streamline pattern
clarifies the reverse Karman vortex street seen in figure 2. The
velocity vectors have a slight rearward orientation, consistent
with the thrust that propels the fish. In contrast, the streamline

Figure 4. Instantaneous streamline patterns for free swimming fish
at Re = 1000 (top) and system with prescribed motion at Re =
200 (bottom).

pattern for the other case corresponds to a drag wake, in the
form of a classical vortex street and the associated momentum
defect.

4. Conclusions

In this work, the viscous vortex particle method has been
used to simulate the free swimming of a three-linkage ‘fish’
undergoing undulatory mechanics. A novel fluid–body
coupling algorithm has been presented which exploits the
physical relationship between vorticity creation and body
motion. Vorticity is shed into a sequence of alternating
sign vortices that is indicative of a thrust-producing wake.
The trajectory and speed were compared with results for
swimming in an inviscid medium. It was found that, in the
cases analyzed, viscosity has a predominantly dissipative role.
An increase in Reynolds number leads to a corresponding
increase in the forward swimming speed, which is lower
than the inviscid speed with the same prescribed undulatory
kinematics. Though this result seems intuitive, the comparison
has never been made before. More analysis at higher Reynolds
numbers must be carried out to determine whether there exists
a maximum mean forward speed at nonzero viscosity for this
set of kinematics. In future work we will also examine the
effect of various hinge control inputs on the maneuverability
of the fish, and investigate the interaction of the fish with
ambient vorticity (for example, from the wake of another fish)
for improved efficiency.
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