
The lift and power requirements of hovering flight in insects
were systematically studied by Weis-Fogh (1972, 1973) and
Ellington (1984c) using methods based on steady-state
aerodynamic theory. It was shown that the steady-state
mechanism was inadequate to predict accurately the lift and
power requirements of small insects and of some large ones
(Ellington, 1984c).

In the past few years, much progress has been made in
revealing the unsteady high-lift mechanisms of insect flight.
Dickinson and Götz (1993) measured the aerodynamic forces
on an aerofoil started impulsively at a high angle of attack
[in the Reynolds number (Re) range of a fruit fly wing,
Re=75–225] and showed that lift was enhanced by the
presence of a dynamic stall vortex, or leading-edge vortex
(LEV). Lift enhancement was limited to only
2–3 chord lengths of travel because of the shedding of the
LEV. For most insects, a wing section at a distance of 0.5R
(where R is wing length) from the wing base travels
approximately 3.5 chord lengths during an up- or downstroke
in hovering flight (Ellington, 1984b). A section in the outer
part of the same wing travels a larger distance, e.g. a section

at 0.75R from the wing base travels approximately
5.25 chord lengths, which is much greater than
2–3 chord lengths (in forward flight, the section would travel
an even larger distance during a downstroke).

Ellington et al. (1996) performed flow-visualization studies
on a hawkmoth Manduca sexta during tethered forward flight
(forward speed in the range 0.4–5.7 m s–1) and on a mechanical
model of the hawkmoth wings that mimicked the wing
movements of a hovering Manduca sexta [Re≈3500; in the
present paper, Re for an insect wing is based on the mean
velocity at r2 (the radius of the second moment of wing area)
and the mean chord length of the wing]. They discovered that
the LEV on the wing did not shed during the translational
motion of the wing in either the up- or downstroke and that
there was a strong spanwise flow in the LEV. (They attributed
the stabilization of the LEV to the effect of the spanwise flow.)
The authors suggested that this was a new mechanism of lift
enhancement, prolonging the benefit of the delayed stall for the
entire stroke. Recently, Birch and Dickinson (2001) measured
the flow field of a model fruit fly wing in flapping motion,
which had a much smaller Reynolds number (Re≈70). They
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The lift and power requirements for hovering flight
in Drosophila virilis were studied using the method of
computational fluid dynamics. The Navier–Stokes
equations were solved numerically. The solution provided
the flow velocity and pressure fields, from which the
unsteady aerodynamic forces and moments were obtained.
The inertial torques due to the acceleration of the wing
mass were computed analytically. On the basis of the
aerodynamic forces and moments and the inertial torques,
the lift and power requirements for hovering flight were
obtained.

For the fruit fly Drosophila virilis in hovering flight
(with symmetrical rotation), a midstroke angle of attack of
approximately 37 ° was needed for the mean lift to balance
the insect weight, which agreed with observations. The
mean drag on the wings over an up- or downstroke was
approximately 1.27 times the mean lift or insect weight
(i.e. the wings of this tiny insect must overcome a drag that

is approximately 27 % larger than its weight to produce a
lift equal to its weight). The body-mass-specific power
was 28.7 W kg–1, the muscle-mass-specific power was
95.7 W kg–1 and the muscle efficiency was 17 %.

With advanced rotation, larger lift was produced than
with symmetrical rotation, but it was more energy-
demanding, i.e. the power required per unit lift was much
larger. With delayed rotation, much less lift was produced
than with symmetrical rotation at almost the same power
expenditure; again, the power required per unit lift was
much larger. On the basis of the calculated results for
power expenditure, symmetrical rotation should be used
for balanced, long-duration flight and advanced rotation
and delayed rotation should be used for flight control and
manoeuvring. This agrees with observations.
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also showed that the LEV did not shed during the
translatory phase of an up- or downstroke.

Dickinson et al. (1999) conducted force
measurements on flapping robotic fruit fly wings and
showed that, in the case of advanced rotation, in
addition to the large lift force during the translatory
phase of a stroke, large lift peaks occurred at the
beginning and near the end of the stroke. (In the case
of symmetrical rotation, the lift peak at the beginning
became smaller and was followed by a dip, and the
lift peak at the end of the stroke also became smaller;
in the case of delayed rotation, no lift peak appeared
and a large dip occurred at the beginning of the
stroke.) Recently, Sun and Tang (2002) simulated the
flow around a model fruit fly wing using the method
of computational fluid dynamics and confirmed
the results of Dickinson et al. (1999). Using
simultaneously obtained forces and flow structures,
they showed that, in the case of advanced rotation,
the large lift peak at the beginning of the stroke was
due to the fast acceleration of the wing and that the
large lift peak near the end of the stroke was due to
the fast pitching-up rotation of the wing. They also
explained the behaviour of forces in the cases of
symmetrical and delayed rotation. As a result of these
studies (Dickinson and Götz, 1993; Ellington et al.,
1996; Dickinson et al., 1999; Birch and Dickinson,
2001; Sun and Tang, 2002), we are better able to
understand how the fruit fly produces large lift forces.
Although the above results were mainly derived from
studies on fruit flies, it is quite possible that they are
applicable to other insects that employ similar kinematics.

The power requirements for generating lift through the
unsteady mechanisms described above cannot be calculated
using methods based on steady-state theory. In the rapid
acceleration and fast pitching-up rotation mechanisms, virtual-
mass force and force due to the generation of the ‘starting’
vortex exist, and they cannot be included in the power
calculation using steady-state theory. In the delayed stall
mechanism, the dynamic-stall vortex is carried by the wing in
its translation, and the drag of the wing, and hence the power
required, must be different from that estimated using steady-
state theory. It is of great interest to determine the power
required for generating lift through the unsteady mechanisms
described above. Moreover, when the wing generates a large
lift force through these unsteady mechanisms, a large drag
force is also generated. For the fruit fly wing, the drag is
significantly larger than the lift, as can be seen from the
experimental data (Dickinson et al., 1999; Sane and Dickinson,
2001) and the computational results (Sun and Tang, 2002).
From the computational results of Sun and Tang (2002), it is
estimated that the mean drag coefficient over an up- or
downstroke is more than 35 % greater than the mean lift
coefficient. It is, therefore, of interest to determine whether
these unsteady lift mechanisms are realistic from the energetics
point of view.

Here, we investigate these problems for hovering flight in
Drosophila virilis using computational fluid dynamics. In this
method, the pressure and velocity fields around the flapping
wing are obtained by solving the Navier–Stokes equations
numerically, and the lift and torques due to the aerodynamic
forces are calculated on the basis of the flow pressure and
velocities. The inertial torques due to the acceleration and
rotation of the wing mass can be calculated analytically. The
mechanical power required for the flight may be calculated
from the aerodynamic and inertial torques. The motion of the
flapping wing and the reference frames are illustrated in
Fig. 1.

Materials and methods
The wing and its kinematics

The wing considered in the present study is the same as that
used in our previous work on the unsteady lift mechanism (Sun
and Tang, 2002). The planform of the wing is similar to that
of a fruit fly wing (see Fig. 2). The wing section is an ellipse
of 12 % thickness (the radius of the leading and trailing edges
is 0.2 % of the chord length of the aerofoil). The azimuthal
rotation of the wing about the Z axis (see Fig. 1A) is called
translation, and the pitching rotation of the wing near the end
of a stroke and at the beginning of the following stroke is called
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Fig. 1. Sketches of the reference frames and wing motion. (A) OXYZ is an
inertial frame, with the XY plane in the stroke plane. oxyz is a frame fixed on the
wing, with the x axis along the wing chord, and the y axis along the wing span.
φ is the azimuthal angle of the wing, α is the angle of attack and R is the wing
length. (B) The motion of a section of the wing.
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rotation or flip. The speed at the span location r2 is called the
translational speed of the wing, where r2 is the radius of the
second moment of wing area, defined by r2=(∫sr2dS/S)1/2,
where r is the radial position along the wing and S is the wing
area. The wing length R is 2.76c, and r2 is 1.6c or 0.58R, where
c is the mean chord length.

The flapping motion considered here is an idealized one,
which is similar to that considered by Dickinson et al. (1999)
and Sun and Tang (2002) in their studies on unsteady lift
mechanisms. An up- or downstroke consists of the following
three parts, as shown in Fig. 1B: pitching-down rotation and
translational acceleration at the beginning of the stroke,
translation at constant speed and constant angle of attack
during the middle of the stroke, and pitching-up rotation and
translational deceleration at the end of the stroke. The
translational velocity is denoted by ut, which takes a constant
value of Um except at the beginning and near the end of a
stroke. During the acceleration at the beginning of a stroke, ut
is given by:

ut+ = Um+sin[π(τ − τ0)/Δτt]; τ0!τ![τ0+(Δτt/2)] , (1)

where ut+=Ut/U (U is the mean value of ut over a stroke and
is used as reference velocity and ut+ is the non-dimensional
translational velocity of the wing), Um+=Um/U (Um+ is the
maximum of ut+), τ=tU/c (t is dimensional time and τ is the
non-dimensional time), τ0 is the non-dimensional time at
which the stroke starts and τ0+(Δτt/2) is the time at which the
acceleration at the beginning of the stroke finishes. Δτt is the
duration of deceleration/acceleration around stroke reversal.
Near the end of the stroke, the wing decelerates from ut+=Um+

to ut+=0 according to:

where τ1 is the non-dimensional time at which the deceleration
starts. The azimuth-rotational speed of the wing is related to
ut. Denoting the azimuthal-rotational speed as φ̇, we have
φ̇(τ)=ut/r2.

The angle of attack of the wing is denoted by α. It also takes
a constant value except at the beginning or near the end of a
stroke. The constant value is denoted by αm. Around the stroke
reversal, α changes with time and the angular velocity α̇ is
given by:

α̇+ = 0.5α̇0+{1 − cos[2π(τ − τr)/Δτr]}; τr!τ!(τr+Δτr) , (3)

where the non-dimensional form α̇+=α̇c/U, α̇0+ is a constant,
τr is the time at which the rotation starts and Δτr is the time
interval over which the rotation lasts. In the time interval Δτr,
the wing rotates from α=αm to α=180 °–αm. Therefore, when
αm and Δτr are specified, α̇0+ can be determined (around the
next stroke reversal, the wing would rotate from α=180 °–αm
to α=αm; the sign of the right-hand side of equation 3 should
then be reversed). The axis of the pitching rotation is located
0.2c from the leading edge of the wing. Δτr is termed wing
rotation duration (or flip duration), and τr is termed the rotation

(or flip) timing, When τr is chosen such that the majority of the
wing rotation is conducted near the end of a stroke, it is called
advanced rotation; when τr is chosen such that half the wing
rotation is conducted near the end of a stroke and half at the
beginning of the next stroke, it is called symmetrical rotation;
when τr is chosen such that the major part of the wing rotation
is delayed to the beginning of the next stroke, it is called
delayed rotation.

In the flapping motion described above, the mean flapping
velocity U, velocity at midstroke Um, angle of attack at
midstroke αm, deceleration/acceleration duration Δτt, wing
rotation duration Δτr, period of the flapping cycle τc and flip
timing τr must be given. These parameters will be determined
using available flight data, together with the force balance
condition of the flight.

The Navier–Stokes equations and the computational method
The flow equations and computational method used in the

present study are the same as in a recent paper (Sun and Tang,
2002). Therefore, only an outline of the method is given here.
The governing equations of the flow are the three-dimensional
incompressible unsteady Navier–Stokes equations. Written in
the inertial coordinate system OXYZ and non-dimensionalized,
they are as follows:

where u, v and w are three components of the non-
dimensional fluid velocity and p is the non-dimensional fluid
pressure. In the non-dimensionalization, U, c and c/U are
taken as reference velocity, length and time, respectively.
Re in equations 5–7 denotes the Reynolds number and is
defined as Re=cU/ν, where ν is the kinematic viscosity of the
fluid.

In the flapping motion considered in the present paper, the
wing conducts translational motion (azimuthal rotation) and
pitching rotation. To calculate the flow around a body
performing unsteady motion (such as the present flapping
wing), one approach is to write and solve the governing
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equations in a body-fixed, non-inertial reference frame with
inertial force terms added to the equations. Another approach
is to write and solve the governing equations in an inertial
reference frame. By using a time-dependent coordinate
transformation and the relationship between the inertial
and non-inertial reference frames, a body-conforming
computational grid in the inertial reference frame (which varies
with time) can be obtained from a body-conforming grid in the
body-fixed, non-inertial frame, which needs to be generated
only once. This approach has some advantages. It does not
need special treatment on the far-field boundary conditions
and, moreover, since no extra terms are introduced into the
equations, existing numerical methods can be applied directly
to the solutions of the equations. This approach is employed
here.

The flow equations are solved using the algorithm developed
by Rogers and Kwak (1990) and Rogers et al. (1991). The
algorithm is based on the method of artificial compressibility,
which introduces a pseudotime derivative of pressure into the
continuity equation. Time accuracy in the numerical solutions
is achieved by subiterating in pseudotime for each physical
time step. The algorithm uses a third-order flux-difference
splitting technique for the convective terms and a second-order
central difference for the viscous terms. The time derivatives
in the momentum equation are differenced using a second-
order, three-point, backward-difference formula. The
algorithm is implicit and has second-order spatial and time
accuracy. For details of the algorithm, see Rogers and Kwak
(1990) and Rogers et al. (1991). A body-conforming grid was
generated using a Poisson solver based on the work of
Hilgenstock (1988). The grid topology used in this work was
an O–H grid topology. A portion of the grid used for the wing
is shown in Fig. 2.

Description of the coordinate systems
In both the flow calculation method outlined above and the

force and moment calculations below, two coordinate systems
are needed. They are described as follows. One is the inertial
coordinate system OXYZ. The origin O is at the root of the
wing. The X and Y axes are in the horizontal plane with the X
axis positive aft, the Y axis positive starboard and the Z axis
positive vertically up (see Fig. 1A). The second is the body-
fixed coordinate system oxyz. It has the same origin as the
inertial coordinate system, but it rotates with the wing. The x
axis is parallel to the wing chord and positive aft, and the y
axis is on the pitching-rotation axis of the wing and positive
starboard (see Fig. 1A). In terms of the Euler angles α and φ
(defined in Fig. 1A), the relationship between these two
coordinate systems is given by:

and

Evaluation of the aerodynamic forces
Once the Navier–Stokes equations have been numerically

solved, the fluid velocity components and pressure at
discretized grid points for each time step are available. The
aerodynamic force acting on the wing is contributed by the
pressure and the viscous stress on the wing surface. Integrating
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Fig. 2. The wing planform and a portion
of the body-conforming grid near the
wing in the z=0 plane (see Fig. 1A for a
definition of this plane).
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the pressure and viscous stress over the wing surface at a time
step gives the total aerodynamic force acting on the wing at
the corresponding instant in time. The lift of the wing, L, is the
component of the total aerodynamic force perpendicular to the
translational velocity and is positive when directed upwards.
The drag, D, is the component of the total aerodynamic force
parallel to the translational velocity and is positive when
directed opposite to the direction of the translational velocity
of the downstroke. The lift and drag coefficients, denoted by
CL and CD, respectively, are defined as follows:

where ρ is the fluid density.

Evaluation of the aerodynamic torque and power
The moment around the root of a wing (point o) due to the

aerodynamic forces, denoted by –Ma, can be written as follows
(assuming that the thickness of the wing is very small):

where S is the wing surface area, F is the aerodynamic force
in unit wing area, r is the distance vector, fx, fy and fz are the
three components of F in the oxyz coordinate system, x, y and
z are the three components of r, and i, j and k are the unit
vectors of the coordinate system oxyz (see Fig. 3). In equation
12, fy, the component of F along the wing span, is neglected
and fx and fz can be obtained from the solution of the flow
equations. The angular velocity vector of the wing, !, has the
following three components in the oxyz coordinate system:

! = (−φ̇sinα, α̇, φ̇cosα) . (13)

The power required to overcome the aerodynamic moments,
called aerodynamic power Pa, can be written as:

where

Qa,t is the torque around the axis of azimuthal rotation and is

due to the aerodynamic drag. It is termed the aerodynamic
torque for translation. Qar is the torque around the axis of
pitching rotation and is due to the aerodynamic pitching
moment. It is termed the aerodynamic torque for rotation. The
coefficients of the aerodynamic torques are defined as follows:

The aerodynamic power coefficient is defined as:

and can be written as:

CP,a = CQ,a,tφ̇+ + CQ,a,rα̇+ , (20)

where φ̇+ is the non-dimensional-angular velocity of azimuthal
rotation.

Evaluations of the inertial torques and power
The moments and products of inertia of the mass of a wing,

with respect to the oxyz coordinate system (see Fig. 3), can be
written as follows, assuming that the thickness of the wing is
very small:

Ixx = ∫(y2 + z2)dmw ≈ ∫y2dmw , (21)

Iyy = ∫(z2 + x2)dmw ≈ ∫x2dmw , (22)

Izz = ∫(x2 + y2)dmw , (23)

Ixy = ∫xydmw , (24)

Ixz = ∫xzdmw ≈ 0 , (25)

Iyz = ∫yzdmw ≈ 0 , (26)

where dmw is a mass element of the wing. The angular
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Fig. 3. Diagram showing how the moments and product of inertia are
computed. o, x, y, coordinates in wing-fixed frame of reference; dmw,
mass element of the wing; r, vector distance between point o and a
mass element of the wing; i, j, unit vectors in the x and y directions,
respectively.
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momentum of the wing H and its three components in the oxyz
coordinate system are as follows:

H = −i(Ixxφ̇sinα + Ixyα̇) + j(Iyyα̇ + Ixyφ̇sinα) + kIzzφ̇cosα ,
(27)

where i, j and k are unit vectors in the x, y and z directions,
respectively. The inertial moment of the wing, Mi, is:

where (dH/dt)xyz denotes the time derivative of the vector as
observed in the rotating system and mix, miy and miz, the x, y
and z components of Mi, respectively, are as follows:

mix = −i[Ixxφ̈sinα + Ixy(φ̇2sinαcosα + α̈)] , (29)

miy = j(Iyyα̈ + Ixyφ̈sinα+ Iyyφ̇2sinαcosα) , (30)

miz = k[Izzφ̈cosα − 2Iyyφ̇α̇sinα + Ixy(α̇2 − φ̇2sin2α)] , (31)

where φ̈ and α̈ are the angular acceleration of the azimuthal
and pitching rotations, respectively. In deriving equation 28,
Iyy≈Izz–Izz was used. The inertial power of the wing is written
as follows:

Pi = Mi · !
= −mixφ̇sinα + miyα̇ + mizφ̇cosα ,
= (−mixsinα + mizcosα)φ̇ + miyα̇
= Qi,tφ̇ + Qi,rα̇ , (32)

where

Qi,t = −mixsinα + mizcosα
= (Ixxsin2α + Izzcos2α)φ̈ + Ixy(α̇2cosα + α̈sinα)
−2Iyyφ̇α̇sinαcosα ; (33)

Qi,r = miy

= Iyyα̈ + Ixyφ̈sinα + Iyyφ̇2sinαcosα . (34)

Qi,t is the inertial torque around the axis of azimuthal rotation
and is termed the inertial torque for translation. Qi,r is the
inertial torque around the axis of pitching rotation and is
termed the inertial torque for rotation. The coefficients of Pi,
Qi,t and Qi,r are denoted by CP,i, CQ,i,t and CQ,i,r, respectively,
and are defined in the same way as the coefficients of the
aerodynamic power and aerodynamic torques. From equation
32, the inertial power coefficient can be written as:

CP,i = CQ,i,tφ̇+ + CQ,i,rα̇+ (35)

and the expressions for CQ,i,t and CQ,i,r are as follows:

where φ̈+ and α̈+ are the non-dimensional angular acceleration
of the azimuthal and pitching rotations, respectively. Using the
values of Ixx, Iyy, Izz and Ixy given in the next section, CQ,i,t
and CQ,i,r can be written as:

CQ,i,t = 4.6[(cos2α + 0.91sin2α)φ̈+ + 0.19(α̇+2cosα
+ α̈+sinα) − 0.17φ̇+α̇+sinαcosα] , (38)

CQ,i,r = 0.40(α̈+ + 2.14φ̈+sinα + φ̇+2sinαcosα) . (39)

From equations 36 and 37, or equations 38 and 39, it can be
seen that the translational motion also contributes to the
rotational inertial torque and vice versa. Since Ixy is over twice
as large as Iyy, the contribution from the translational
acceleration φ̈+ to the rotational inertial torque can be larger
than that from the rotational acceleration α̈+.

Evaluation of the total mechanical power
The total mechanical power of the wing, P, is the power

required to overcome the combination of the aerodynamic and
inertial torques and can be written as:

P = (Ma + Mi) · ! . (40)

Henceforth, it is termed simply the power. Combining
equations 20 and 35, the non-dimensional power coefficient
(represented by CP), can be written as follows:

CP = CP,t + CP,r (41)
where

CP,t = (CQ,a,t + CQ,i,t)φ̇+ , (42)

CP,r = (CQ,a,r + CQ,i,r)α̇+ . (43)

CP,t is the coefficient of power for translation and CP,r the
coefficient of power for rotation.

Data for hovering flight in Drosophila virilis
Data for free hovering flight of the fruit fly Drosophila

virilis Sturtevant were taken from Weis-Fogh (1973), which
were derived from Vogel’s studies of tethered flight (Vogel,
1966). Insect weight was 1.96×10–5 N, wing mass was
2.4×10–6 g (for one wing), wing length R was 0.3 cm, the area
of both wings St was 0.058 cm2, mean chord length c was
0.097 cm, stroke amplitude Φ was 2.62 rad and stroke
frequency n was 240 s–1.

From the above data, the mean translational velocity of the
wing U (the reference velocity), the Reynolds number Re, the
non-dimensional period of the flapping cycle τc and mean lift
coefficient required for supporting the insect’s weight C–L,w
were calculated as follows: U=2φnr2=218.7 cm s–1;
Re=cU/ν=147 (ν=0.144 cm2 s–1); τc=(1/n)/(U/c)=8.42;
C–L,w=1.96×10–5/0.5ρU2St=1.15 (ρ=1.23×10–3 g cm–3). Note
that, in our previous work (Sun and Tang, 2002), a smaller
C–L,w (approximately 0.8) was obtained for the same insect
under the same flight conditions. This is because a larger
reference velocity, the velocity at midstroke, was used there.
The moments and product of inertia were calculated by
assuming that the wing mass was uniformly distributed
over the wing planform, and the results were as follows:

(37)CQ,i,r = ,α̈+ + φ̈+sinα + φ̇+2sinαcosα
Iyy

0.5ρSc3

Ixy

Iyy









(36)

CQ,i,t = +

(α̇+2cosα + α̈+sinα) − 2

cos2α + sin2α φ̈+Izz

0.5ρSc3

Ixx

Izz

Ixy

Izz

Iyy

Izz

























φ̇+α̇+sinαcosα ;

(28)

Mi =

= mixi + miyj + mizk ,

+ ! × H
dH
dt







 xyz
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Ixx=0.721×10–7 g cm2; Iyy=0.069×10–7 g cm2; Izz=0.790×10–7 g
cm2; Ixy=0.148×10–7 g cm2.

Results and discussion
Test of the flow solver

The code used here, which is based on the flow-
computational method outlined above, was developed by Lan
and Sun (2001a). It was verified by the analytical solutions of
the boundary layer flow on a flat plate (Lan and Sun, 2001a)
and the flow at the beginning of a suddenly started aerofoil
(Lan and Sun, 2001b) and tested by comparing the calculated
and measured steady-state pressure distributions on a wing
(Lan and Sun, 2001a). To establish further the validity of the
code in calculating the unsteady aerodynamic force on flapping
wings, we present below a comparison between our calculated
results and the experimental data of Dickinson et al. (1999). In
our previous work on the fruit fly wing in flapping motion (Sun
and Tang, 2002), calculated results using this code were
compared with the experimental data, but the wing aspect ratio
was not the same as that used in the experiments and only one
case was compared.

Measured unsteady lift in Dickinson et al. (1999) was
presented in dimensional form. For comparison, we need to
convert it into the lift coefficient. In their experiment, the fluid
density ρ was 0.88×103 kg m–3, the model wing length R was
0.25 m and the wing area S was 0.0167 m2. The speed at the
wing tip during the constant-speed translational phase of a
stroke, given in Fig. 3D of Dickinson et al. (1999), was
0.235 m s–1 and, therefore, the reference speed (mean speed at
r2=0.58R) was calculated to be U=0.118 m s–1. From the above
data, 0.5ρU2S=0.102 N. Using the definition of CL (equation
10), the lift in Fig. 3A of Dickinson et al. (1999) can be
converted to CL (Fig. 4) and compared with the calculated CL
for the cases of advanced rotation (Fig. 4A), symmetrical
rotation (Fig. 4B) and delayed rotation (Fig. 4C). The aspect
ratio of the wing in the experiment was calculated as
R2/S=3.74, and a wing of the same aspect ratio was used in the
calculation. The magnitude and trends with variation over time
of the calculated CL are in reasonably good agreement with the
measured values.

In the above calculation, the computational grid had
dimensions of 93×109×71 in the normal direction, around the
wing section and in the spanwise direction, respectively. The
normal grid spacing at the wall was 0.002. The outer boundary
was set at 10 chord lengths from the wing. The time step was
0.02. Detailed study of the numerical variables such as grid
size, domain size, time step, etc., was conducted in our
previous work on the unsteady lift mechanism of a flapping
fruit fly wing (Sun and Tang, 2002), where it was shown that
the above values for the numerical variables were appropriate
for the flow calculation. Therefore, in the following
calculation, the same set of numerical variables was used.

Force balance in hovering flight
Since we wanted to study the power requirements for

balanced flight, we first investigated the force balance. For the
flapping motion considered in the present study, the mean drag
on the wing over each flapping cycle was zero, and the
horizontal force was balanced. Therefore, we needed only to
consider under what conditions the weight of the insect was
balanced by the mean lift.

As noted above, the kinematic parameters required to
describe the wing motion are U, Um+, τc, Δτt, Δτr, τr and αm.
Of these, U and τc were determined above using the flight data
given by Weis-Fogh (1973). Ennos (1989) made observations
of the free forward flight of Drosophila melanogaster (the
flight was approximately balanced). His data (his Figs 6D, 7A)
showed that symmetrical rotation was employed by the insect.
Data on the hovering flight of craneflies, hoverflies and
droneflies also showed that symmetrical rotation was
employed by these insects (see Figs 8, 9 and 12, respectively,
of Ellington, 1984a). Therefore, it was assumed here that
symmetrical rotation was employed in hovering flight in
Drosophila virilis; as a result, τr was determined. From the data
of Ennos (1989) and Ellington (1984a), the deceleration/
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acceleration duration Δτt was estimated to be approximately
0.2τc. We assumed that Δτt=0.18τc (this value was used in
previous studies on unsteady force mechanism of the fruit fly
wing; Dickinson et al., 1999; Sun and Tang, 2002). Using Δτt
and U, Um+ could be determined.

Dickinson et al. (1999) and Sun and Tang (2002) used
Δτr≈0.36τc. In the present study, we first assumed Δτr≈0.36τc
and then investigated the effects of varying Δτr. At this point,
all the kinematic parameters had been determined except αm,
which was determined using the force balance condition.

The calculated lift coefficients versus time for three values
of αm are shown in Fig. 5. The mean lift coefficient CL

– plotted
against αm is shown in Fig. 6. In the range of αm considered
(αm=25–50 °), CL

– increases with αm; at αm=35 °, CL
–=1.15,

which is the value needed to balance the weight of the insect.
At αm=35 °, the mean drag coefficient during an up- or
downstroke (represented by CD

–) was calculated to be 1.55,
which is significantly larger than CL

– (=1.15). The lift-to-drag
ratio is 1.15/1.55=0.74.

Power requirements
As shown above, at αm=35 °, the insect produced enough lift

to support its weight. In the following, we calculated the power

required to produce this lift and investigated the mechanical
power output of insect flight muscle and its mechanochemical
efficiency.

Aerodynamic torque
As expressed in equation 20, the aerodynamic power

consists of two components, one due to the aerodynamic torque
for translation and the other due to the aerodynamic torque for
rotation. The coefficients of these two torques, CQ,a,t and CQ,a,r,
are shown in Fig. 7B. CQ,a,t is much larger than CQ,a,r. The
CQ,a,t curve is similar in shape to the CD curve shown in
Fig. 5C for obvious reasons.

One might expect that, during the deceleration of the wing
near the end of a stroke, CQ,a,t would change sign because of
the wing being ‘pushed’ by the flow behind it. But as seen
from Fig. 7B (e.g. during the downstroke), CQ,a,t becomes
negative only when the deceleration is almost finished
because, while decelerating, the wing rotates around an axis
that is near its leading edge. Therefore, a large part of the wing
is effectively not in deceleration and does not ‘brake’ the
pushing flow.

Inertial torque
The coefficients of the inertial torques for translation (CQ,i,t)

and for rotation (CQ,i,r) are shown in Fig. 7C. The inertial
torques are approximately zero in the middle of a stroke, when
the translational and rotational accelerations are zero. At the
beginning and near the end of the stroke, the inertial torque for
translation has almost the same magnitude as its aerodynamic
counterpart. Similar to the case of the aerodynamic torques, the
inertial torque for translation is much larger than the inertial
torque for rotation.

At the beginning of a stroke, the sign of CQ,i,r is opposite to
that of α̇+ (Fig. 7C). Near the end of the stroke, the sign of
CQ,i,r is also opposite to that of α̇+. In this part of the stroke,
although α̈+ has the same sign as α̇+, φ̈+ has the opposite sign
to α̇+. In equation 37, φ̈+ is multiplied by Ixy, which is much
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larger than Iyy; thus, its effect dominates over that of other
terms in the equation, leading to the above result. This shows
that, for the flapping motion considered, the inertial torque of
rotation will always contribute to ‘negative’ work.

Power and work
From the above results for the aerodynamic and inertial

torque coefficients, the power coefficients can be computed
using equations 41–43. The coefficients of power for
translation (CP,t) and rotation (CP,r) are plotted against time in
Fig. 8. CP,t is positive for the majority of a stroke and becomes
negative only for a very short period close to the end of the
stroke. CP,r is negative at the beginning and near the end of a
stroke and is approximately zero in the middle of the stroke.
Throughout a stroke, the magnitude of CP,t is much larger than
that of CP,r. Two large positive peaks in CP,t appear during a
stroke. One occurs during the rapid acceleration phase of the
stroke as a result of the larger aerodynamic and inertial torques
occurring there. The other is in the fast pitching-up rotation
phase of the stroke and is due to the large aerodynamic torque
there.

Integrating CP,t over the part of a cycle where it is positive
gives the coefficient of positive work for translation, which is
represented by CW,t+. Integrating CP,t over the part of the cycle
where it is negative gives the coefficient of ‘negative’ work for
translation; this is represented by CW,t–. Similar integration of
CP,r gives the coefficients of the positive and negative work for
rotation; they are denoted by CW,r+ and CW,r–, respectively.
The results of the integration are: CW,t+=15.96, CW,t–=–1.00,
CW,r+=0.56 and CW,r–=–2.30.

Specific power
The body-mass-specific power, denoted by P*, is defined as

the mean mechanical power over a flapping cycle (or a stroke
in the case of normal hovering) divided by the mass of the
insect. P* can be written as follows:

P* = 0.5ρU3St(CW/τc)/m
= 9.81UCW/(τcC

–
L,w) , (44)

where m is the mass of the insect and CW is the coefficient of
work per cycle (C–L,w=1.15, τc=8.421 and U=2.19 m s–1, as
discussed above).

When calculating CW, one needs to consider how the ‘
negative’ work fits into the power budget (Ellington, 1984c).
There are three possibilities (Ellington, 1984c; Weis-Fogh,
1972, 1973). One is that the negative power is simply
dissipated as heat and sound by some form of an end stop; it
can then be ignored in the power budget. The second is that,
during the period of negative work, the excess energy can be
stored by an elastic element, and this energy can then be
released when the wing does positive work. The third is that
the flight muscles do negative work (i.e. they are stretched
while developing tension, instead of contracting as in ‘positive’
work), but the negative work uses much less metabolic energy
than an equivalent amount of positive work. Of these three
possibilities, we calculated CW (or P*) on the basis of the
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assumption that the muscles act as an end stop. CW is written
as:

CW = CW,t+ + CW,r+ . (45)

It should be pointed out that, for the insect considered in the
present study, the negative work is much smaller than the
positive work (see Fig. 8 and below); therefore, CW calculated
by considering the other possibilities will not be very different
from that calculated from equation 45.

Using CW,t+ and CW,r+ calculated above, CW was calculated
using equation 45 to be 16.52. The specific power P* was then
calculated using equation 44: P*=36.7 W kg–1.

Effects of the timing of wing rotation on lift and power
In the flight considered above, symmetrical rotation was

employed. Dickinson et al. (1999) showed that the timing of
the wing rotation had significant effects on the lift and drag of
the wing. It is of interest to see how the lift and the power
required change when the timing of wing rotation is varied.

Fig. 9 shows the calculated lift and drag coefficients for the

cases of advanced rotation and delayed rotation (results for the
case of symmetrical rotation are included for comparison). The
value of τr used can be read from Fig. 9A. The case of
advanced rotation has a larger CL and CD than the case of
symmetrical rotation, and the case of delayed rotation has a
much smaller CL and a slightly larger CD than the case of
symmetrical rotation. An explanation for the above force
behaviours was given by Dickinson et al. (1999) and Sun and
Tang (2002). The mean lift coefficient CL

– for the advanced
rotation case is 1.47, 28 % larger than that for the symmetrical
rotation case (1.15); CL

– for the delayed rotation case is only
0.39, which is 66 % smaller than that for the symmetrical
rotation case.

The aerodynamic and inertial torque coefficients for the
advanced rotation and delayed rotation cases are shown in Figs
10 and 11, respectively. Similar to the symmetrical rotation
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Fig. 9. Non-dimensional angular velocity of pitching rotation α̇+ and
azimuthal rotation φ̇+ (A), lift coefficient CL (B) and drag coefficient
CD (C) versus time during one cycle for three different timings of
wing rotation (midstroke angle of attack αm=35 °, non-dimensional
duration of wing rotation Δτr=0.36τc). τc, non-dimensional period of
one flapping cycle; τ, non-dimensional time.
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case, the CQ,a,t curve for the case of advanced rotation (or
delayed rotation) looks like the corresponding CD curve. For
the advanced rotation case, CQ,a,t is much larger than that of
the symmetrical rotation case, especially from the middle to
the end of the stroke (compare Fig. 10B with Fig. 7B). CQ,i,t
is the same as that of the symmetrical rotation case, because
the translational acceleration is the same for the two cases
(compare Fig. 10C with Fig. 7C). For the delayed rotation
case, CQ,a,t is larger than that of the symmetrical rotation case
in the early part of a stroke (compare Fig. 11B with Fig. 7B).
CQ,i,t is the same as that of the symmetrical rotation case for
the same reason as above. Similar to the symmetrical rotation
case, for both the advanced and delayed rotation cases, CQ,a,r
and CQ,i,r are much smaller than CQ,a,t and CQ,i,t, respectively.

The non-dimensional power coefficients for the cases of

advanced rotation and delayed rotation are shown in Fig. 12
(the results of symmetrical rotation, taken from Fig. 8, are
included for comparison). CP,r is much smaller than CP,t
because, as shown in Figs 10 and 11, CQ,a,r and CQ,i,r were
much smaller than CQ,a,t and CQ,i,t, respectively. CP,t behaves
approximately the same as CQ,a,t. The most striking feature of
Fig. 12 is that CP,t for advanced rotation is much larger than
that for symmetrical rotation from the middle to near the end
of a stroke.

Integrating the power for the cases of advanced rotation
and delayed rotation in the same way as above for the case
of symmetrical rotation, the corresponding values of CW,t+,
CW,t_, CW,r+ and CW,r– were obtained, from which the work
coefficient per cycle, CW, was calculated. The results are
given in Table 1 (results for symmetrical rotation are
included for comparison). For the advanced rotation case, CW
is approximately 80 % larger than for symmetrical rotation
case. As noted above, CL

– is 28 % larger than that of the
symmetrical rotation case. This shows that advanced rotation
can produce more lift but is very energy-demanding. For the
delayed rotation case, CW is approximately 10 % larger than
for the symmetrical rotation case but, as noted above, its
CL
– is 66 % smaller; therefore, the energy spent per unit CL

– is
much larger than for the symmetrical rotation case. The above
results show that advanced rotation and delayed rotation
would be much more costly if used in balanced, long-duration
flight.

For reference, we calculated another case in which advanced
rotation timing was employed in balanced flight but αm was

Fig. 11. Non-dimensional angular velocity of pitching rotation α̇+

and azimuthal rotation φ̇+ (A), aerodynamic (B) and inertial (C)
torque coefficients for translation (CQ,a,t and CQ,i,t, respectively) and
rotation (CQ,a,r and CQ,i,r, respectively) versus time during one cycle
(midstroke angle of attack αm=35 °, delayed rotation, non-
dimensional duration of wing rotation Δτr=0.36τc). τc, non-
dimensional period of one flapping cycle; τ, non-dimensional time.
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decreased to 22 ° so that the mean lift was equal to the weight
(Table 1). In this case, CW was 30.10, which is approximately
82 % larger than for the case employing symmetrical rotation,
showing clearly that advanced rotation is very energy-
demanding.

Effects of flip duration
In the above analyses, the duration of wing rotation (or flip

duration) was taken as Δτr=0.36τc. Below, the effects of
changing the flip duration were investigated. Fig. 13 shows
the lift and drag coefficients of the wing for two shorter
flip durations Δτr=0.24τc and Δτr=0.19τc, with the above
results for Δτr=0.36τc included for comparison. If the
flip duration is varied while other parameters are kept
unchanged, the mean lift coefficient will change. To maintain
the balance between mean lift and insect weight, αm was
therefore adjusted. For Δτr=0.24τc, αm was changed to 36.5 °
to give a CL

– of 1.15; for Δτr=0.19τc, αm was changed to
38.5 °.

From Fig. 13C, it can be seen that, when Δτr is decreased,
the CD peak at the beginning of a stroke becomes much smaller
and the CD peak near the end of the stroke is delayed and
becomes slightly smaller. A smaller CD at the beginning of the
stroke means reduced aerodynamic power there. Since the
wing decelerates near the end of the stroke, delaying the CD
peak at this point means that the peak would occur when the
wing has a lower velocity, resulting in reduced aerodynamic
power. The power coefficients are shown in Fig. 14; at the
beginning and at the end of a stroke, CP,t is smaller for smaller
Δτr.

By integrating the power coefficients in Fig. 14, CW,t+,
CW,t–, CW,r+ and CW,r– were obtained (Table 2). CW was
computed using equation 45, and the results are also shown in
Table 2. When Δτr is decreased to 0.24τc, CW is 12.96, much
smaller than for Δτr=0.36τc. When Δτr is further decreased to
0.19τc, CW was slightly greater (13.06). This is because when
Δτr is decreased to 0.19τc, CW,t+ also decreases; however,
CW,r+ increases (possibly due to the wing rotation becoming
very fast).

For Δτr=0.24τc (which has approximately the same CW as
Δτr=0.19τc), the mass-specific power P* was computed to be
28.7 W kg–1. If the ratio of the flight muscle mass to the body
mass is known, the power per unit flight muscle or muscle-
mass-specific power (Pm*) can be calculated from the body-
mass-specific power. Lehmann and Dickinson (1997) obtained
a value of 0.3 for the ratio for fruit fly Drosophila
melanogaster. This value gives:

Pm* = P*/0.3 . (46)
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Table 1. Effects of the timing of wing rotation on lift and power (Δτr=0.36τc)
αm
(degrees) Rotation timing CL

— CW,t+ CW,t– CW,r+ CW,r– CW

35 Symmetrical 1.15 15.96 –1.0 0.56 –2.30 16.52
35 Advanced 1.47 26.08 –1.62 3.48 –0.72 29.56
35 Delayed 0.39 17.70 –1.90 0.14 –2.70 17.84
22 Advanced 1.15 24.74 –1.84 5.36 –0.40 30.10

CL
—, mean lift coefficient; CW, coefficient of work per cycle; CW,t+ and CW,t–, coefficients of positive and negative work for translation,

respectively; CW,r+ and CW,r–, coefficients of positive and negative work for rotation, respectively; αm, midstroke angle of attack; Δτr, non-
dimensional duration of wing rotation; τc, non-dimensional period of one flapping cycle.

Fig. 13. Non-dimensional angular velocity of pitching rotation α̇+

and azimuthal rotation φ̇+ (A), lift coefficient CL (B) and drag
coefficient CD (C) versus time during one cycle for three different
values of the non-dimensional duration of wing rotation Δτr.
Symmetrical rotation; mean lift coefficient CL

–=1.15 (midstroke angle
of attack αm was adjusted to make the mean lift equal to insect
weight). τc, non-dimensional period of one flapping cycle; τ, non-
dimensional time.
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The muscle efficiency, η, is:

η = P*/Rm , (47)

where Rm is the body-mass-specific metabolic rate. Lehmann
et al. (2000) measured the body-mass-specific CO2 released for
several species of fruit fly in the genus Drosophila. For D.
virilis in hovering flight, the rate of CO2 release was
30.1 ml g–1 h–1, corresponding to a body-mass-specific
metabolic rate of 170 W kg–1. The calculated muscle-mass-
specific power and muscle efficiency are Pm*=95.7 W kg–1 and
η=17 %.

It is very interesting to look at the drag on the wing. In the
above case (Δτr=0.24τc, αm=36.5 °), the mean drag coefficient
CD
– over an up- or downstroke is 1.46; CL

–/CD
–=1.15/1/46=0.79.

We see that, for this tiny hovering insect, its wings must

overcome a drag that is 27 % larger than its weight to produce
a lift that equals its weight. (This is very different from a large
fast-flying bird, which only needs to overcome a drag that is a
small fraction of its weight, and from a hovering helicopter,
the blades of which need to overcome a drag that represents an
even smaller fraction of its weight.)

Comparison between the calculated results and previous data
The above results showed that, for a duration of wing

rotation Δτr=0.19τc and Δτr=0.24τc, the power expenditure for
hovering flight in Drosophila virilis was relatively small
compared with that for larger values of Δτr. The corresponding
non-dimensional mean rotational velocities are approximately
1 (maximum α̇+ is approximately 2, as seen in Fig. 13A). This
mean rotational velocity is close to the value of 0.95 measured
in the free forward flight of Drosophila melanogaster [data in
Table 4 of Ennos (1989) multiplied by R/r2=1/0.58 because a
different reference velocity was used]. It is also close to that
measured in free hovering flight in craneflies, hoverflies and
droneflies: approximately 0.9, 1.2 and 0.9, respectively [data
in Table 2 of Ellington (1984a) multiplied by 1/0.58].
Therefore, both from measurements from similar insects and
from the calculated efficiency, it is reasonable to assume a Δτr
of approximately 20 % of τc.

The calculated midstroke angle of attack αm is
approximately 37 ° (see Table 2; αm=36.5 ° and αm=38.5 ° for
Δτr=0.24τc and Δτr=0.19τc, respectively). Vogel (1967)
measured the angle of attack for tethered Drosophila virilis
flying in still air; αm was approximately 45 °. Our calculated
value is smaller than this value, which is reasonable since the
calculated value is for free and balanced flight whereas the
measured value was for tethered flight in which the insect
could use a larger angle of attack. Ellington (1984a) observed
many small insects in hovering flight, including the fruit fly,
and found that the angle of attack employed was approximately
35 °. The predicted value thus is in good agreement with
observations.

The calculated body-mass-specific power P* and muscle
efficiency η were 28.7 W kg–1 and 17 %, respectively.
Lehmann and Dickinson (1997) studied the muscle efficiency
of the fruit fly Drosophila melanogaster by simultaneously
measuring the metabolic rate and the flight kinematics. Using
the measured stroke amplitude and frequency, they estimated
the mean specific power using a quasi-steady aerodynamics

Table 2. Effects of duration of wing rotation on lift and power (αm adjusted for balanced hovering flight) 
αm

Δτr/τc (degrees) CL
— CW,t+ CW,t– CW,r+ CW,r– CW

0.36 35 1.15 15.96 –1.00 0.56 –2.30 16.52
0.24 36.5 1.15 12.70 –0.66 0.26 –1.76 12.96
0.19 36.5 1.15 12.08 –0.88 0.98 –1.42 13.06

CL
—, mean lift coefficient; CW, coefficient of work per cycle; CW,t+ and CW,t–, coefficients of positive and negative work for translation,

respectively; CW,r+ and CW,r–, coefficients of positive and negative work for rotation, respectively; αm, midstroke angle of attack; Δτr, non-
dimensional duration of wing rotation; τc, non-dimensional period of one flapping cycle.

Fig. 14. The power coefficients for translation (CP,t) and rotation
(CP,r) versus time during one cycle for three different values of the
non-dimensional duration of wing rotation Δτr. Symmetrical rotation;
midstroke angle of attack αm was adjusted to make the mean lift
equal to insect weight. τc, non-dimensional period of one flapping
cycle; τ, non-dimensional time.
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method. Their estimate of P* for hovering flight was
17.9 W kg–1, only approximately half the value calculated
using the present unsteady flow simulation method. Their
measured metabolic rate was approximately 199 W kg–1. As a
result, they obtained a muscle efficiency of approximately 9 %,
approximately half that obtained in the present study. In their
recent work on unsteady force measurements on a model fruit
fly wing, Sane and Dickinson (2001) showed that the drag on
the wing was much larger than the quasi-steady estimate of
Lehmann and Dickinson (1997). On the basis of the measured
drag, they suggested that the previous value of muscle
efficiency presented by Lehmann and Dickinson (1997) should
be adjusted to approximately 20 %. This is similar to the value
calculated in the present study.

The calculated results show that, for the advanced rotation
and delayed rotation cases, the energy expended for a given
mean lift is much larger than that in the case of symmetrical
rotation. On the basis of these results, symmetrical rotation
should be employed by the insect for balanced, long-duration
flight and advanced rotation and delayed rotation should be
employed for manoeuvring. This agrees with observations on
balanced flight (Ennos, 1989) and manoeuvring (Dickinson et
al., 1993) in the fruit fly Drosophila melanogaster.

List of symbols
c mean chord length
CD drag coefficient
CD
– mean drag coefficient (over an up- or 

downstroke)
CL lift coefficient
CL
– mean lift coefficient
C–L,w mean lift coefficient for supporting the 

insect’s weight
CP power coefficient
CP,a coefficient of aerodynamic power
CP,i coefficient of inertial power
CP,r coefficient of power for rotation
CP,t coefficient of power for translation
CQ,a,r coefficient of aerodynamic torque for rotation
CQ,a,t coefficient of aerodynamic torque for 

translation
CQ,i,r coefficient of inertial torque for rotation
CQ,i,t coefficient of inertial torque for translation
CW coefficient of work per cycle
CW,r+ coefficient of positive work for rotation
CW,r– coefficient of negative work for rotation
CW,t+ coefficient of positive work for translation
CW,t– coefficient of negative work for translation
D drag
dmw mass element of the wing
F aerodynamic force per unit wing area
fx, fy, fz x, y and z components of F, respectively
H angular momentum of a wing
i, j, k unit vectors in the x, y and z directions, 

respectively

Ixx, Iyy, Izz moments of inertia of the wing about the x, y
and z axes, respectively

Ixy, Iyz,, Ixz products of inertia of the wing
L lift
m mass of the insect
mw wing mass of the insect
Ma aerodynamic moment
Mi inertial moment
mix, miy, miz x, y and z components of Mi, respectively
n wingbeat frequency
O, o origins of the inertial and non-inertial frames 

of reference, repectively
p non-dimensional fluid pressure
P mechanical power
Pa aerodynamic power
Pi inertial power
P* body-mass-specific power
Pm* muscle-mass-specific power
Qa,r aerodynamic torque for rotation
Qa,t aerodynamic torque for translation
Qi,r inertial torque for rotation
Qi,t inertial torque for translation
r radial position along wing length
r2 radius of the second moment of wing area
r vector distance between point o and an 

element on the wing
R wing length
Re Reynolds number
Rm body-mass-specific metabolic rate
S area of one wing
St area of a wing pair
t time
u, v, w three components of non-dimensional fluid 

velocity
ut translational velocity of the wing
ut+ non-dimensional translational velocity of the 

wing
U reference velocity (ut averaged over a 

stroke)
Um midstroke translational velocity of a wing (or 

maximum of ut)
Um+ maximum of ut+

X, Y, Z coordinates in the inertial frame of reference
x, y, z coordinates in the non-inertial frame of 

reference
α angle of attack
αm midstroke angle of attack
α̇ angular velocity of pitching rotation
α̇+ non-dimensional angular velocity of pitching 

rotation
α̇0+ a constant
α̈ angular acceleration of pitching rotation
α̈+ non-dimensional angular acceleration of 

pitching rotation
Δτt duration of deceleration/acceleration around 

stroke reversal (non-dimensional)
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Δτr duration of wing rotation or flip duration 
(non-dimensional)

η muscle efficiency
ν kinematic viscosity
φ azimuthal or positional angle
Φ stroke amplitude
φ̇ angular velocity of azimuthal rotation
φ̇+ non-dimensional angular velocity of azimuthal 

rotation
φ̈ angular acceleration of azimuthal rotation
φ̈+ non-dimensional angular acceleration of 

azimuthal rotation
ρ density of fluid
τ non-dimensional time
τc period of one flapping cycle (non-

dimensional)
τ1 time when translational deceleration starts 

(non-dimensional)
τr time when pitching rotation starts (non-

dimensional )
τt time when stroke reversal starts (non-

dimensional )
τs period of one stroke (non-dimensional)
τ0 time when a stroke starts (non-dimensional)
! total angular velocity vector of the wing
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