
IOP PUBLISHING BIOINSPIRATION & BIOMIMETICS

Bioinsp. Biomim. 3 (2008) 034002 (7pp) doi:10.1088/1748-3182/3/3/034002

COMMUNICATION

Fish and chips: implementation of a
neural network model into computer
chips to maximize swimming efficiency in
autonomous underwater vehicles
R W Blake1, H Ng2, K H S Chan1 and J Li1

1 Department of Zoology, University of British Columbia, British Columbia, V6T 1Z4, Canada
2 Information Technology, University of British Columbia, British Columbia, V6T 1Z2, Canada

E-mail: blake@zoology.ubc.ca, omega centari@hotmail.com, chankhs@zoology.ubc.ca,
lijason@zoology.ubc.ca

Received 28 April 2008
Accepted for publication 13 June 2008
Published 15 July 2008
Online at stacks.iop.org/BB/3/034002

Abstract
Recent developments in the design and propulsion of biomimetic autonomous underwater
vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005
Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force
measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312–7). Whilst
such vehicles have many potential advantages in operating in complex environments (e.g. high
manoeuvrability and stability), limited battery life and payload capacity are likely functional
disadvantages. Boxfish employ undulatory median and paired fins during routine swimming
which are characterized by high hydromechanical Froude efficiencies (≈0.9) at low forward
speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, ‘plate-like’
caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum
Froude efficiency (≈0.5) and is mainly employed as a rudder for steering and in rapid
swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering
designs are not obligated to wholly duplicate a biological model, computer chips were
developed using a multilayer perception neural network model of undulatory fin propulsion in
the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum
values of propulsive efficiency at any given forward velocity, giving a minimum energy drain
on the battery. We envisage that externally monitored information on flow velocity (sensory
system) would be conveyed to the chips residing in the vehicle’s control unit, which in turn
would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated
with optimal propulsion efficiency. Power savings could protract vehicle operational life
and/or provide more power to other functions (e.g. communications).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Much research and development on autonomous underwater
vehicles (AUVs) has focused on larger vehicles driven by

propellers (Bandyopadhyay 2004) or undulatory body motions
(Triantafyllou and Triantafyllou 1995, Ostrowski and Burdick
1998, Triantafyllou et al 2000, Morgansen et al 2001, Kim
and Youm 2004). More recently, developments in unsteady
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fluid dynamics and biomimetic microtechnology have lent
themselves to the fabrication of centimetre scale microrobots’
micro-underwater vehicles (MUVs) based on boxfish models
(Deng and Avadhanula 2005). Like boxfish, such MUVs
would be effective in complex environments requiring slower
swimming speeds and high manoeuvrability and stability.
Whilst swimming mechanics in boxfish is well understood
(e.g. routine swimming performance, manoeuvrability and
stability, carapace hydrodynamics (drag and lift, vortical flow
self-correcting forces); Walker 2000, Gordon et al 2000,
Hove et al 2001, Blake 2004, Bartol et al 2008), little
attention has been given to MUV functional design and
operation. Deng and Avadhanula (2005) present a biomimetic
system concept design, fabrication details and experimental
force measurements on prototype boxfish-inspired MUVs. A
central processing unit (CPU) sends a control signal to the
locomotor unit which in turn receives energy from a power
supply (battery) feeding back to the CPU. Possible functional
disadvantages of MUVs are limited payload capacity and
battery life.

Here, we develop control unit computer chips designed
to optimize propulsive efficiency relative to flow velocity.
External information on flow (sensory system) could send
sensor signals to the CPU that in turn would send a control
signal to the locomotory unit allowing actuators to operate
at maximum efficiency relative to perceived flow conditions
saving battery power that could protract vehicle life, allow for a
larger payload or provide additional power for other functions
(e.g. communications).

2. Methods

We developed three computer chips based on multilayer
perception neural network models (Li et al 2007) of the
hydrodynamic efficiencies of swimming in the knifefish
Xenomystus nigri Günther. Specifically, a neural network
model was implemented into computer chips by (1)
construction of networks with the optimal topology based
on experimental data; (2) sensitivity analysis of determinant
factors for the Froude efficiency ηp (forward velocity U, fin
lateral velocity W = ∂h/∂t where h is the distance displaced
by the fin’s trailing edge, lateral velocity of pushing on the
water w = (∂h∂t−1) + U(∂h∂x−1)); (3) validation and testing
of network predictions and (4) implementation of the neural
network into three computer chips.

Neural networks are characterized by distinct topologies
of nonlinear differentiable activation functions in neurons
consisting of input, output and hidden layers such that each
neuron of a layer is connected to all others in the next
(McCulloch and Pitts 1943). Following Li et al (2007),
the optimal neural network configuration was adopted from
a neighbourhood of 1–3 layers of 1–10 neurons. We used the
momentum learning method, an advanced adaptive patterning
learning technique progressed from the classic gradient
descent method (Salehfar and Benson 1998). Gradient descent
incorporates error back prorogation algorithm to train weights
(based on local information) for minimizing overall error. The
instantaneous error of neuron i at the nth training iteration is

ei(n) = di(n) − yi(n), (1)

where ei(n) is the instantaneous error, di(n) is the desired output
and yi(n) is the neuron output (Kong et al 1998). Weights are
trained from the iteration n + 1 in gradient descent:

Wij (n + 1) = Wij (n) + γ δi(n)xj (n), (2)

where Wij (n) is the weight between nodes i and j at iteration n,
xj is the present input, δi(n) is the local gradient which pointed
to the required change in the weight and γ is the learning
rate. This method was improved by incorporating ‘momentum
learning’ to decrease noise and increase convergence:

∧
Wij (n + 1) = Wij (n + 1) + α(Wij (n) − Wij (n − 1)), (3)

where
∧

Wij (n + 1) and Wij (n) are the weights between nodes i
and j at iteration n for momentum learning and gradient descent
respectively and α is the momentum factor. The stopping
criterion was chosen at maximum epoch (iterations through
the patterns represented in the input) of 1000 and at a mean
square error (MSE) � 0.01:

MSE =
∑p

j=0

∑m
i=0 (dij − yij )

2

m · p
, (4)

where m is the size of the training dataset, p is the total number
of neurons and yij and dij are the network and desired output
for data series i at neuron j respectively.

Input data for analysis of the fin motions of X. nigri are
derived from a simplified bulk momentum approach based on
elongated body theory (Lighthill 1969), where the mean thrust
power P is given by subtracting the mean rate at which kinetic
energy is wasted in the wake Pk from the total mean rate of
working Pt :

P = Pt − Pk = U(MwW) − 0.5U(Mw2), (5)

where M is the added mass at the trailing edge of the undulatory
anal fin (M= 1

4πρd2
s β, where ρ, ds and β are water density,

the depth of a propulsive section and shape factor respectively
(β ≈ 1; Lighthill 1970)). The propulsive efficiency ηp is

ηp = 1 − (Pt − P)/Pt . (6)

The values for W, w,P , Pt , Pk and ηp as a function of the
swimming velocity U were taken from Blake (1983; table 1).

Sensitivity analysis was performed on the trained neural
network to determine the relative importance of each variable
using weights derived from the training process and measuring
the change in the predicted output for every 50 divisions
of 1 SD of the mean input (Masters 1993, Dollhopf et al
2004). The optimality and accuracy was tested based on the
cross-validation scheme using 50% of the dataset for training
and 50% for MLP-NN performance testing. The sensitivity
analysis showed that the swimming speed U and fin lateral
speed W were the major determinants of ηp for implementation
into computer chips (figure 1(A)). The neural network model
was then constructed based on the cross-validation scheme
(75% of the data were used to train the neural network and
25% was used to test its performance) and good agreement was
found between neural network predictions and actual values
(P > 0.05). Figure 1(B) shows a 3D representation of the
output from the trained neural network based on U, W and ηp.
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Figure 1. (A) Sensitivity for the predicted efficiency ηp (defined as
the change in the mean output for every 50 divisions within 1 SD of
the mean input), swimming speed U, lateral velocity of the fin W,
lateral velocity of pushing on the water slice w, thrust T, mean thrust
power P, kinetic energy wasted in the wake Pkin and mean total
power Ptot. (B) Three-dimensional plot of the predicted output ηp as
a function of the lateral velocity of the fin W and swimming speed U.

(This figure is in colour only in the electronic version)

Three computer chip designs were constructed: (1) fin
lateral speed versus swimming speed giving propulsive
efficiency (figure 2), (2) propulsive efficiency versus fin
lateral speed giving swimming speed (figure 3) and
(3) propulsive efficiency versus swimming speed giving fin
lateral speed (figure 4). The implementation of figures 2–4
consist of 1918, 2318 and 2362 integrated circuits (ICs)
respectively and multiple modules with two, three and four
6-bit inputs controlling each module of chips (gates 1, 2 and
3 respectively). Each module is interconnected via a matrix
design and activated by two input controls. The circuit is
initiated when the two inputs are entered.

Each circuit represents an entire array of swimming
efficiencies, swim speeds and fin speed efficiencies. Multiple,
redundant outputs are combined into one output via the merger
(figure 5) to reduce the number of connections required to
display the final results. Figure 5 shows that an individual
output connection state is either enabled or disabled and that
the circuit is forward feeding (i.e. current flow does not oppose

the input direction). The flow is always on high and buffered
inverters negate the current flow to low. The matrix is run
in parallel where voltage is either high or low on all the
interconnected circuits and the computations within the matrix
and outputs representing the control signals are all digital.
Circuit architecture is based on several different configurations
of the gates (figure 5) and each can determine the output
efficiency.

Bus sizes of 12 and 13 bits were constructed for the
computer chips based on Boolean logic functions. The outputs
for the first computer chip (figure 2) of gates 1 ηp(gate 1),
2 ηp(gate 2) and 3 ηp(gate 3) are

ηp(gate 1) = (A0 ∧ B0) ∧ (A1 ∧ B1) ∧ (A2 ∧ B2)

∧ (A3 ∧ B3) ∧ (A4 ∧ B4) ∧ (A5 ∧ B5) (7)

ηp(gate 2) = {(A0 ∧ B0) ∧ (A1 ∧ B1) ∧ (A2 ∧ B2)

∧ (A3 ∧ B3) ∧ (A4 ∧ B4) ∧ (A5 ∧ B5)}
∨ {(A0 ∧ C0) ∧ (A1 ∧ C1) ∧ (A2 ∧ C2)

∧ (A3 ∧ C3) ∧ (A4 ∧ C4) ∧ (A5 ∧ C5)} (8)

and

ηp(gate 3) = {(A0 ∧ B0) ∧ (A1 ∧ B1) ∧ (A2 ∧ B2)

∧ (A3 ∧ B3) ∧ (A4 ∧ B4) ∧ (A5 ∧ B5)}
∨ {(A0 ∧ C0) ∧ (A1 ∧ C1) ∧ (A2 ∧ C2)

∧ (A3 ∧ C3) ∧ (A4 ∧ C4) ∧ (A5 ∧ C5)}
∨ {(A0 ∧ D0) ∧ (A1 ∧ D1) ∧ (A2 ∧ D2)

∧ (A3 ∧ D3) ∧ (A4 ∧ D4) ∧ (A5 ∧ D5)} (9)

respectively where A0, A1, A2, A3, A4, A5, B0, B1, B2, B3, B4,
B5, C0, C1, C2, C3, C4, C5, D0, D1, D2, D3, D4 and D5 are
each 1 bit and can be negated (¬) and the two switches are
A0 ∧A1 ∧A2 ∧A3 ∧A4 ∧A5 and B0 ∧B1 ∧B2 ∧B3 ∧B4 ∧B5

for fin lateral speed and swimming speed respectively. Outputs
for the second and third computer chips (figures 3 and 4) of
gates 1 ηq,r (gate 1) and 2 ηq,r (gate 2) are

ηq,r (gate 1) = ((A0 ∧ B0) ∧ (A1 ∧ B1) ∧ (A2 ∧ B2)

∧ (A3 ∧ B3) ∧ (A4 ∧ B4) ∧ (A5 ∧ B5)) ∧ A6 (10)

and

ηq,r (gate 2)

=
{
((A0 ∧ B0) ∧ (A1 ∧ B1) ∧ (A2 ∧ B2) ∧ (A3 ∧ B3)

∧ (A4 ∧ B4) ∧ (A5 ∧ B5)) ∧ A6

}

∨ {((A0 ∧ C0) ∧ (A1 ∧ C1) ∧ (A2 ∧ C2)

∧ (A3 ∧ C3) ∧ (A4 ∧ C4) ∧ (A5 ∧ C5)) ∧ A6} (11)

respectively where the variables are each 1 bit and can be
negated. The two switches are A0 ∧ A1 ∧ A2 ∧ A3 ∧ A4 ∧
A5 ∧ A6 and B0 ∧ B1 ∧ B2 ∧ B3 ∧ B4 ∧ B5.

3. Results and discussion

Figures 2–4 show the implemented schematic diagram of the
computer chips that output the optimum swimming efficiency,
swim speed and fin lateral speed respectively. The high
quality of the computer chips is demonstrated in their outputs
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Figure 2. Computer chip for the propulsive efficiency ηp as a function of the fin lateral speed W versus swimming speed U. Multiple (1918
in total) integrated circuits are implemented in modules (gates 1, 2 and 3, with two, three and four 6-bit inputs, respectively) interconnected
via a matrix design. Multiple, redundant outputs are combined into one output via the merger M1 (figure 5).

which are all equal to the neural network model. This
supports the proposition of incorporating them into the CPU
of AUVs. Figure 1(A) shows that the neural network model
is most sensitive to the fin lateral velocity W and the forward
velocity U. The values of propulsive efficiency exceed 0.7 and
asymptote at about 0.9 at higher forward velocities.

Deng and Avadhanula (2005) give a basic deign overview
and ‘simulator architecture’ for the major design units of
biomimetic MUVs based on oscillatory propulsion employing
a boxfish model. There are five main units: locomotory,
sensory, power, communications and control. Whilst the
nature of the propulsion system may vary depending on
the biomimetic model (boxfish (e.g. Deng and Avadhanula
2005), anguilliform (e.g. Ostrowski and Burdick 1998),
carangiform (e.g. Morgansen et al 2001), thunniform (e.g.
Triantafyllou and Triantafyllou 1995) and undulatory fin
model (Collins et al 2008)), the basic design overview
presented by Deng and Avadhanula (2005) is generally
applicable. Deng and Avadhanula’s (2005) MUV is propelled
by an electromechanical actuated-fin system. Two side fins
(for steering and moving upward and downward) and a plate-
like caudal fin (ostraciiform tail) for propulsion are driven by
a PZT bimorph actuator with motion amplification from four
bar mechanisms. The fins are powered by electric energy (e.g.
lithium battery) and the power supply, communications (e.g.
ultrasonic transmitters), sensory (e.g. flow velocity detection)
units feed into the control (CPU) unit.

We envisage that part of a control unit could contain the
three chips necessary to optimize propulsive efficiency relative
to the flow velocity. External information on flow velocity

could be conveyed by sensor signals to the control unit which
in turn could instruct the locomotor unit (say an undulatory fin)
to appropriately match fin frequency, and hence W, to achieve
optimum propulsive efficiency. Under these conditions, the
energy drain on the power unit will be a minimum at any
given U. This power saving could protract the operational life
of the vehicle and/or provide more power to non-locomotor
functions (e.g. sensors, communications).

Currently, the ‘ostraciiform model’ is favoured with
respect to the design and function of small, highly
manoeuvrable and stable AUVs (e.g. Gordon et al (2000),
Bartol et al (2003), Blake (2004), Deng and Avadhanula
(2005)). Whilst this approach to AUV function is appropriate
and promising as far as body design, manoeuvrability and
stability are concerned, the current focus on an oscillating
plate as a basis for propulsion might be given further
consideration. In particular, it can be shown that the maximum
Froude efficiency of a low aspect ratio ‘plate-like’ caudal fin
propeller (ostraciiform tail) has a relatively low upper value
(≈0.5; M J Lighthill in Blake (1981)). In fact, boxfish are
not propelled by the reciprocating motions of their caudal
fin during routine activity. Rather, they swim through the
action of undulatory median and paired fins and, in rectilinear
swimming, the caudal fin is often collapsed presumably to
reduce drag (Blake 1977). The caudal fin is mainly employed
as a rudder for steering and in bouts of unsteady swimming
(R W Blake, unpublished observations).

Undulatory median and paired fin swimming is an
adaptation for propulsion for high hydromechanical efficiency
at low forward speeds (Blake 2004). Given that
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Figure 3. Computer chip for the swimming speed U as a function of the efficiency ηp and fin lateral speed W. Multiple (2318) integrated circuits are implemented in modules
(gates 4 and 5, with two and three 6-bit inputs, respectively) interconnected via a matrix design. Multiple, redundant outputs are combined into one output via the merger M2
(figure 5).

5



Bioinsp. Biomim. 3 (2008) 034002 Communication

Figure 4. Computer chip for the fin lateral speed W as a function of the efficiency ηp and swimming speed U. Multiple (2362) integrated
circuits are implemented in modules (gates 4 and 5, with two and three 6-bit inputs, respectively) interconnected via a matrix design.
Multiple, redundant outputs are combined into one output via the merger M2 (figure 5).

Figure 5. Circuit architecture is based on several different configurations of the gates (gates 1, 2, 3, 4 and 5, with two, three, four, two and
three 6-bit inputs, respectively) and mergers M1 and M2 to combine multiple outputs into one output.

biomimetically inspired engineering designs need not be
constrained by the limitations imposed by phylogenetic
(historical) or ontogenetic (developmental) factors, optimal

structural and functional solutions can be found by selecting
appropriate design features from a variety of ‘fish models’.
Specifically, Deng and Avadhanula’s (2005) boxfish-based
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MUV could combine the relatively low drag, high stability
and manoeuvrability given by the boxfish carapace body
form (Bartol et al 2008) with an undulatory fin-based
propulsion system rather than the current oscillating fin design.
Biomimetic undulatory fins have been developed (sinusoidally
undulating flexible fins with distributed compliance based on
a rib structure; Trease et al 2003). This material design
has recently been incorporated into a ‘WaveDrive’ actuating
mechanism and preliminary measurements have been made on
thrust production (Collins et al 2008).

Further research on the performance of a prototype AUV
combining a boxfish-inspired form (e.g. Deng and Avadhanula
(2005)) equipped with flow sensors, an undulatory fin actuator
(e.g. Trease et al (2003), Collins et al (2008)) and a simulator
architecture with a CPU incorporating the computer chips
described here is warranted.
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