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Abstract 
Most multi-agent systems are inspired by classical AI, whose objective was to realize human-
level intelligence in a computer. As the field has moved toward multiple agents, there has been a 
presumption that individual agents still aspire to high-level intelligence. Swarming systems 
follow an alternative model, inspired more by artificial life than artificial intelligence. The 
individual agents in these systems may be non-cognitive, but complex, robust cognition emerges 
from their interactions. This paper defines swarming and the concepts of self-organization and 
emergence that underlie it. It describes the kinds of problems for which it is well suited, explores 
why it functions, and outlines some initial principles of an engineering methodology for 
developing artificial swarming systems. 

1 WHAT is Swarming? 
We define swarming as “useful self-organization of multiple entities through local interactions.” 
We begin by reviewing other definitions, then focus in on organization and self-organization, 
and the relation of these concepts with emergence. 

1.1 Swarming 
Definitions of swarming have been proposed by insect ethologists, roboticists, and military 
historians. Of the many definitions that have been proposed, a few will illustrate the main 
themes. 

Students of biological systems use it 
to describe decentralized self-
organizing behavior in populations 
of (usually simple) animals [9, 10, 
14, 38]. Swarming has been defined 
(e.g., [10]) as “distributed problem-
solving devices inspired by 
collective behavior of social insect 
colonies and other animal 
societies.” Table 1 lists a few 
examples that have been studied. 

Table 1: Some Examples of Swarming in Nature 

Swarming Behavior Entities 
Pattern Generation Bacteria, Slime Mold 
Path Formation Ants 
Nest Sorting Ants 
Cooperative Transport Ants 
Food Source Selection Ants, Bees 
Thermoregulation Bees 
Task Allocation Wasps 
Hive Construction Bees, Wasps, Hornets, 

Termites 
Synchronization Fireflies 
Feeding Aggregation Bark Beetles 
Web Construction Spiders 
Schooling Fish 
Flocking Birds 
Prey Surrounding Wolves 

The use of the term to describe 
artificial systems can be traced to 
Beni, Hackwood, and Wang in the 
late 1980’s [4-7, 26, 27]. Their work 
focuses on populations of cellular 
robots, and they use the term to 
describe self-organization through 
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local interactions. In the context of unpiloted air vehicles (UAV), Clough defines a swarm as a 
“collection of autonomous individuals relying on local sensing and reactive behaviors interacting 
such that a global behavior emerges from the interactions” [16]. He distinguishes swarming 
(resulting from reactive behaviors of simple homogeneous entities performing simple tasks) from 
the emergent behavior of heterogeneous teams of deliberative entities performing complex tasks.  
Recently, “swarming” has come into vogue in the military to describe a battlefield tactic that 
involves decentralized, pulsed attacks [2, 20, 21, 30]. Military historians focus less on the 
process of self-organization and more on the resulting organization itself: “the systematic pulsing 
of force and/or fire by dispersed, internetted units, so as to strike the adversary from all 
directions simultaneously” [2]; a “scheme of maneuver” consisting of “a convergent attack of 
several semi-autonomous (or autonomous) units on a target” [21]. The connection with insect 
applications is not coincidental. Insect self-organization is robust, adaptive, and persistent, as 
anyone can attest who has tried to keep ants out of the kitchen or defeat a termite infestation, and 
military commanders would love to be able to inflict the frustration, discomfort, and 
demoralization that a swarm of bees can visit on their victims. The linkage between swarming 
and warfare is ancient. In the Bible, God promises to demoralize the indigenous population of 
Canaan before the invading Israelites in the words, “I will send the hornet before you” (Exodus 
23:28; cf. Deuteronomy 7:20; Joshua 24:12). In the eighteenth dynasty (1550 BC), the ancient 
Egyptians awarded military heroes a gold and silver medal in the form of a stylized fly ( ) 
[29], and there is evidence that the ancients sometimes hurled hives of stinging insects against 
their enemies [35]. 

Figure 1

 

Figure 1: Egyptian “fly” medal 
for military heroes, 1550 BC 
(National Gallery of Art) 

For the purpose of this paper, we will define swarming as “useful self-organization of multiple 
entities through local interactions.” This definition highlights elements of the others that have 
been suggested. 

“Useful” emphasizes that we are interested in engineering systems that are answerable to 
someone outside of the system boundary for their behavior. 
Some forms of self-organized behavior, such as riots and 
oscillation, might be interesting to a biologist, but 
undesirable in a commercial or military application.  

Self-organization is most prominent in the robotic 
definitions, since the concern there is to distinguish 
swarming from conventional top-down control schemes. 
The military definition does not emphasize self-
organization, perhaps because of a historic tradition of top-
down centralized control. We do not require that the self-
organization result from reactive rather than deliberative 
individual behavior. Thus our definition includes not only 
Clough’s “swarms” but also his “teams,” if they meet the 
other terms of the definition. 

The notion of multiple entities is common to all 
definitions, and indeed is intrinsic to the common-sense use 
of the term. A major motivator for swarming is the 
proliferation of autonomous platforms, such as vehicles, 
communications systems, and sensor systems. Although 
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these systems are often referred to as “unmanned,” in current practice it would be more accurate 
to describe them as “remotely manned.” The flight crew for a Predator UAV consists of two 
people. Housing them in a control van rather than on board the flying platform considerably 
reduces their risk, but does not reduce the manpower requirements for fielding the vehicle. A 
major promise of swarming is multiplying the number of platforms that a single person can 
effectively control. 

Our focus on local interactions has two motivations: a need and a promise. The need is a 
growing concern about communication congestion. The promise is the observation that local 
interactions suffice to maintain long-range coordination in biological systems, so that we ought 
to be able to reverse-engineer the underlying mechanisms for use in synthetic systems.  

1.2 Organization 
As used in expressions such as “self-organization,” the word “organization” has at least three 
distinct, but related, meanings: it can refer to a mapping, a process, or a structure. 

Organization1 is a mapping from a system to an ordered set, e.g.,  

Such a mapping permits us to say that one system is “more organized” than another (or than the 
same system at a different time).  

Different detailed definitions for this mapping are possible. Common themes will include 
entropy and symmetry, as illustrated in Figure 2. 

Denote a system by an upper-case letter, and its elements as the same letter in lower-case, 
indexed. Thus A = {a1, …, an} and B = {b1, …, bk} denote two systems. The entropy of a system 
A is denoted by S(A). With these concepts, we can meaningfully assert Org(A) > Org(B) if 

• S(B) > S(A) or 

• B has a higher order of symmetry than A 

Entropy can be computed against different bases, such as the spatial distribution of agents, their 
directions of movement, the behaviors open to them at any moment, or the time series generated 
by their actions. This variety can lead to the concern that entropy, and thus organization1, is in 
the eye of the beholder. In fact, methods exist for defining changes in entropy in an unambiguous 
way [17, 46], though discussing them in detail is beyond the scope of this survey. 

Organization2 is a process in a single system in which Organization1 increases with time: 

Org(A(t2)) > Org(A(t1)), t2 > t1 

Organization3 is the structure resulting from Organization2, and can be measured with 
Organization1. 

Increasing Organization

Increasing Symmetry

Increasing Entropy

Increasing Organization

Increasing Symmetry

Increasing Entropy
 

Figure 2: Symmetry vs. Organization 

1.3 Self-Organization and 
Emergence 

With this understanding of 
“organization,” it would seem natural to 
define “self-organization” as a process 
(Organization2) that reduces the entropy 
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of a system without external intervention (motivating the modifier “self”). This definition is in 
line with some that have been proposed in the literature, for example: 

Camazine [14]: “Pattern formation occurs through interactions internal to the system, 
without intervention by external directing influences (leaders, blueprints, recipes, 
templates)” 

Bonabeau [10]: “A set of dynamical interactions whereby structures appear at the global 
level of a system from interactions among its lower-level components. … The rules 
specifying the interactions are executed on the basis of purely local information, without 
reference to the global pattern.” 

These definitions emphasize the system boundary (through terms such as “local” and “internal”). 
The second includes three other concepts as well: 

• A distinction of multiple levels within a system 

• “Interactions” among entities at lower levels of the system 

• The “appearance” or “emergence” of properties and structures at higher levels from these 
interactions 

Other definitions of “self-organization” rely only on these three themes, without focusing on the 
system boundary, for example: 

Biebricher [8]: The process by which individual subunits achieve, through their 
cooperative interactions, states characterized by new, emergent properties transcending 
the properties of their constitutive parts 

Schweitzer [45]: The emergence of new system properties not readily predicted from the 
basic equations.” 

To achieve greater precision, we propose distinguishing between self-organization and 
emergence on the basis of the contrast between the horizontal concept of system boundary and 
the vertical concept of levels ( ). Figure 3

Self-Organization

Em
ergence

Self-Organization

Em
ergence

 

Figure 3: Comparing Self-Organization and 
Emergence 

We define Self-Organization as organization Among elements within a level 

• Without information flow across the boundary. 

The second law of thermodynamics demands that there be energy flow across the boundary of 
any system whose organization increases over time. Self-organization requires that this energy 
flow not contain information. This definition depends critically on the location of the system 
boundary. If the boundary is moved, 
a system’s character as self-
organizing or not may change. 
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We define Emergence as a subcategory of self-
organization (Figure 4). Emergence (as we use the term) 
describes the appearance of structures at a higher level 
that are not explicitly represented in lower-level 
components. The reliance of swarming systems on 
locally available information makes it difficult for them 
to reason explicitly about higher-level structures, so 
emergence tends to be an important mechanism in 
swarming systems. 

Neither self-organization nor emergence is necessarily 
good. The formation of structures will correspond to a 
reduction in entropy, whether those structures support or 
frustrate the objectives of the system stakeholders. The fact that emergent structures can be 
pathological (as in the case of race conditions or herding behavior) may explain the apprehension 
with which some people view emergence. For example, Wooldridge and Jennings assert [48], 
“Emergent functionality is akin to chaos ….”  They urge engineers of agent systems to “severely 
restrict the way in which agents can interact with one-another … ensure that there are few 
channels of communication between agents … restrict the way in which agents interact” in order 
to reduce the likelihood of emergent behavior. A consequence of this restriction is that any 
desired system-level behavior must be explicitly represented in the lower-level components, a 
requirement that is difficult to meet if the system’s requirements include responding gracefully to 
unanticipated changes in its environment. Our alternative approach is to develop principles for 
designing and developing systems whose emergent behavior is beneficial or at least benign. 

Self Organization
e.g., Classical 
MAS Emergence

e.g., Ant Path 
Formation

Organization2
e.g., Hierarchical Contol

 

Figure 4: Emergence as a 
Subcategory of Self-Organization 

This difference in vision leads to two distinct approaches to building multi-agent systems (
).  

Figure 
5

System-Level 
Structure

Fine-
Grained 
Agent

Coarse-
Grained 
Agent

Reaction BDI

ExploitationExploration
SymbolicNon-Symbolic

DeliberationEmergence

ExploitationExploration
SymbolicNon-Symbolic

DeliberationEmergence

 

Figure 5: Two Families of Self-Organizing Systems 

• Classical multi-agent systems achieve self-organization through deliberation among fairly 
sophisticated (“coarse-grained”) agents. Emergent systems can use much simpler reactive 
agents. 

• Reasoning in emergent self-organization is often non-symbolic, while classical systems 
are usually symbolic. 

• Because of the need for representing system-level behavior explicitly at all layers, non-
emergent systems are 
best suited for exploiting 
well-known 
environments. The ability 
of emergent systems to 
produce new behaviors is 
appropriate for more 
exploratory problems. 

A front line of our current 
research is understanding how 
to hybridize these two families 
of systems. 
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1.4 Alternatives to Self-Organization 
Camazine [14] identifies four alternatives to self-organization: leaders, recipes, blueprints, and 
templates. 

• A leader is a single agent that receives status information from the other agents, decides 
on the action that each should take, and issues commands. This paradigm is sometimes 
called “centralized control.” If the leader is not part of the system, the flow of the leader’s 
commands to the other agents crosses the system boundary. 

• A recipe is a script (a process description that is sequenced in time) that is constructed by 
the system’s designer and installed at compile-time. If the designer is not part of the 
system, this script crosses the system boundary when it is installed. 

• A blueprint is a map (a spatial prescription) that is constructed by the system’s designer 
and installed at compile-time. If the designer is not part of the system, this map crosses the 
system boundary when it is installed. 

• A template is a structure in the system’s environment (e.g., the walls of a soccer arena) 
that constraints the system’s behavior. If this structure is not part of the system, 
information about it crosses the system boundary as the system interacts with it. 

It is useful to keep these alternatives in mind for two reasons. First, self-organization is not the 
best answer for every problem. In some cases, an alternative approach may be preferable, and 
responsible engineering requires awareness of these alternatives. Second, in each case, the 
system can be made self-organizing by expanding the system boundaries to include the source of 
the information. Thus many agent architectures include a (software) leader that directs the 
actions of the other agents. The engineer must carefully specify the system boundary, and may 
be able to adjust the behavior of the system significantly by shifting the boundary. 

2 WHERE would you want to use Swarming? 
Five domain features indicate the appropriateness of swarming: discreteness, deprivation, 
distribution, decentralization, and dynamism. 

2.1 Discrete 
It is easiest to apply agents (whether self-organizing or not) to a domain if the domain consists of 
discrete elements that can be mapped onto the agents. Some forms of organization3 also are 
achieved most naturally in a discrete system, for example, those that are characterized as a graph 
structure of some sort.  

2.2 Deprived (Resource-Constrained) 
We say that a system is “deprived” (or resource constrained) when limits on resources (such as 
processing power, communications bandwidth, or storage) rule out brute-force methods. For 
instance, if enough communications bandwidth is available, every agent can communicate 
directly with every other agent. If agents have enough processing power, they can reason about 
the massive input they will receive from other agents. If they have enough storage, they can 
maintain arbitrarily large sets of instructions telling them what to do in each circumstance.  
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Under such assumptions, swarming architectures would seem to have little benefit. Some 
futurists extrapolate the historically exponential increases in hardware processing power, storage, 
and bandwidth, and claim that these constraints will quickly disappear. At the hardware level, 
Moore’s law and its analogs for bandwidth and storage give good reason to be optimistic. 
However, a computer system is more than hardware. It is constrained by theoretical, 
psychological, commercial, and physical issues as well. For example: 

• No matter how much storage is available, the knowledge engineering effort required to 
construct large knowledge bases remains a formidable psychological obstacle to 
completely defining the behavior of every agent.  

• No matter how fast processors get, the theory of NP-completeness points out that the time 
required to solve reasonably-sized problems in many important categories will still be 
longer than the age of the universe. An important instance of this challenge is the truth 
maintenance problem, the challenge of detecting inconsistencies in a knowledge base that 
result from changes in the world, which is NP-hard for reasonably expressive logics.  

• No matter how much bandwidth the hardware can support, the market may not make it 
available in the configuration needed for a specific problem. Military planners, for 
instance, have long counted on the availability of commercial satellite channels, but the 
commercial market has moved toward land-based fiber backbones, resulting in a major 
shortfall in projected available bandwidth for military deployments in underdeveloped 
areas. 

• The growing emphasis on Pervasive Computing and nanotechnology requires the 
deployment of computation on very small devices. The physical limitations of such 
devices will not permit them to support the level of processing, storage, and 
communications that can be realized on unconstrained devices.  

Several characteristics of swarming systems make them good candidates for deprived 
environments. For example,  

• Interactions among system components are typically local. If information needs to move 
long distances, it does so by propagation rather than direct transfer. Local interactions 
limit the number of neighbors about whom each agent must reason at a time, and enable 
the use of low-power transmissions that permit bandwidth to be reused every few 
kilometers. 

• Because system-level behaviors do not need to be specified at the level of each element, 
the knowledge engineering and storage requirements are greatly reduced. 

• Emergent systems commonly maintain information by continuously refreshing current 
information and letting obsolete information evaporate. This process guarantees that 
inconsistencies remove themselves within a specified time horizon, without the need for 
complex truth-maintenance procedures. 

2.3 Distributed 
The notion of “local interactions” is central to our definition of swarming. Keeping interactions 
local is a powerful strategy for dealing with deprived systems, but requires that the entities in the 
problem domain be distributed over some topology within which interactions can be localized.  
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The most common topology is a low-dimensional Euclidean manifold, or a graph that can be 
embedded in such a manifold. For example, insect stigmergy takes place on physical surfaces 
that, at least locally, are embedded in two-dimensional manifolds. Most engineered applications 
of swarming such as path planning [42], pattern recognition [13], sensor network self-
organization, and ant-colony optimization [18], follow this pattern. In these applications, locality 
can be defined in terms of a distance metric, and enforced by physical constraints on 
communications (e.g., a node’s neighbors are all the other nodes with whom it has radio contact).  

More recent work (for instance, in telecommunications [28], or in our laboratory, on semantic 
structures) successfully mediates agent interactions via scale-free small-world graphs. Such 
graphs have long-range shortcuts and so are typically not embeddable in low-dimensional 
manifolds. These shortcuts pose problems for classical definitions of distance, but locality of 
interaction can still be defined in terms of nearest-neighbor graph connectivity, and the empirical 
success of these latter efforts shows that this form of locality is sufficient to achieve 
coordination. 

2.4 Decentralized 
As a system characteristic, decentralization is orthogonal to distribution. In a centralized system, 
all transactions require the services of a single distinguished element. If the system is not 
distributed, the central point and the system are identical. If it is distributed, the central point is 
one of the elements, with which the others must communicate. A common extension of 
centralization in a distributed system is the hierarchy, in which the central element for a small 
group of nodes joins with other nodes at its level in reporting to a yet higher central element, and 
so on until the top node is reached. 

Swarming can be a poor choice for applications that require centralization. The restriction to 
local interactions means that communications between peripheral elements and the central 
element is an emergent behavior of the system, which may not meet the quality of service 
requirements or the need for detailed predictability that often lead to a requirement for central 
control. However, systems designers should be cautious about accepting a centralized 
architecture. Such architectures have at least three weaknesses.  

1. They are inherently resistant to increases in scale. As the system grows, the capacity of 
the central element must also grow. In decentralized approaches, new elements can be 
added without changing any of the existing elements. 

2. A frequent role of the central element is to mediate interactions among lower-level nodes 
(as in the mediator architecture [23]). This technique may actually lengthen the 
communication path between two nodes, leading to undesirable delays as messages travel 
up, then back down, the hierarchy. 

3. The central element and the communication paths leading to it are vulnerable to attack or 
failure, making the system less robust than a swarming system.  

Centralized architectures often result more from tradition than from absolute system 
requirements, and a growing body of cases suggests that acceptable functionality can be 
achieved, with improved scalability, timeliness, and robustness, in a decentralized way. In 
addition, centralization is impossible in some cases (such as achieving coordination among a 
population of entities whose members are not known in advance and who do not all have access 
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to a common element). Swarming techniques are a natural candidate for implementing 
decentralized architectures. 

2.5 Dynamic 
A system is dynamic if its requirements change during its lifetime. The emergent behavior that is 
characteristic of swarming is a powerful way for dealing with changed requirements. The system 
elements do not need to encode the system-level behavior explicitly, and so do not need to be 
modified when those requirements change. Three aspects of such change affect the need for 
emergence: scope, speed, and obscurity. 

Scope characterizes the amount of change to which a system’s requirements are susceptible. The 
less the scope of change, the more likely it is that the system as originally configured will deliver 
acceptable performance. The greater the degree of change, the more value there is in the ability 
of the elements to reorganize to produce new emergent behaviors that were not active in the 
initial configuration. 

Speed characterizes the rapidity of change, and affects the desirability of swarming by way of the 
distinction between centralized and decentralized architectures. If the system changes slowly, 
non-swarming techniques that rely on centralized organizations can tolerate the time delays 
imposed by hierarchical communications. As the rate of change begins to outpace the 
communications time through the hierarchy, centralized organizations find themselves 
perpetually providing the answers to yesterday’s problems, and unable to respond rapidly 
enough. A common response is to flatten the organization and empower lower-level nodes to act 
on local information, essentially moving toward a swarming architecture. 

Obscurity reflects the degree to which later requirements can be anticipated by the original 
designer. Even if changes are rapid and wide in scope, if they follow along the lines anticipated 
by the designer, simple parameter adjustments in a non-emergent architecture may be able to 
cope with them. Swarming systems are much better at enabling a system to satisfy requirements 
that would be surprising to its original designer. 

3 WHY does Swarming work? 
Swarming is a discovery, not an invention. It is a 
naturally occurring phenomenon that we seek to 
imitate in engineered systems. Design principles 
for effective artificial swarming systems must be 
developed from an understanding of why 
swarming works in natural systems. 

We analyze these underlying principles of 
swarming in terms of three restrictions on the 
space of all possible multi-process systems, 
outlined in .  Figure 6

Coupled Processes

Autocatalytic 
Potential

Function

Coupled Processes

Autocatalytic 
Potential

Function

Multiple 
Processes

 

Figure 6: Three Enablers for 
Swarming Systems 

• The various processes must be coupled with 
one another so that they can interact. 

• This interaction must be self-sustaining, or 
autocatalytic. Autocatalysis enables self-
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organization, but it is 
not necessarily useful. Table 2: Categories of Information Exchange 

  Topology of Inter-Agent Relationships 

  
Centralized (between 
Distinguished and 
Subordinate agents) 

Decentralized (among 
Peer agents) 

Direct 
(messages 
between 
agents) 

Construction (Build-
Time) 
Command (Run-time) 

Conversation 

In
fo

rm
at

io
n 

Fl
ow

 

Indirect 
(non-
message 
interaction) 

Constraint 
Stigmergy (generic) 
Competition (limited 
resources) 

• The self-organizing 
system must produce 
functions that are useful 
to the system’s 
stakeholders. 

In discussing each of these, 
we first review the concept 
and its mechanisms, then 
discuss design principles to 
which it leads.  

3.1 Coupled Processes 

3.1.1 How Processes can be Coupled 
Agents must exchange information if they are to self-organize. Different patterns of information 
exchange are possible, and can be classified along two dimensions: Topology and Information 
Flow (Table 2). 

The Topology dimension depends on two different kinds of relations that agents can have with 
one another. When the agents can say “No” to one another within the rules of the system, they 
are “peer agents.” When one of them (say agent A) can say “No” to the other (B), but B cannot 
say “No” to A, we call A the “distinguished agent” and B the “subordinate.” The relationship 
between two agents may be fairly fixed (for example, the relationship between a human 
programmer and her software agent). Or it may vary over time (as when peer agents negotiate a 
work plan that calls for one of them to supervise the other, resulting in a distinguished-
subordinate relationship during execution). These concepts can be developed more formally 
through dependency and autonomy theory [15, 37]. Centralized information exchange is between 
a distinguished and a subordinate agent, while decentralized information exchange is between 
peer agents. 

The Information Flow dimension relies on environmental state variables that the agents can 
manipulate and sense. All information exchange is ultimately mediated by the environment, but 
the role of the environment is sometimes not modeled explicitly. The information flow from one 
agent to another is Direct if no intermediate manipulation of information is modeled, and Indirect 
if it is explicitly modeled. 

Centralized mechanisms all involve communication between the distinguished agent and its 
subordinates. This flow may be direct (when the distinguished agent constructs or commands the 
subordinates) or indirect (when the distinguished agent constrains the subordinates by 
manipulating exogenous environmental variables visible to the subordinates). In correlation 
through command, used commonly in robot soccer, holonic manufacturing, and some simulation 
applications, agents behave much like objects, executing methods invoked by incoming 
messages. The focal point algorithm advocated by [22] and the common utility functions implicit 
in [24] both rely on construction (common programming). In indirect centralized mechanisms, 
subordinates jointly sense changes in a shared exogenous environmental variable. The variable’s 
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dynamics are independent of agent actions, so it cannot move information between subordinates. 
But it may serve as a synchronizing signal that correlates the agents’ actions. The experimenter 
who configures targets and obstacles in an experimental testbed is constraining the subordinates, 
supporting correlation through indirect centralized action. 

Decentralized mechanisms all involve communication among peers. Most negotiation research 
focuses on direct peer-to-peer information flows (“conversation”). Indirect decentralized flows 
occur when peers make and sense changes to environmental variables. This class of coordination 
is called “stigmergy,” [25], from the Greek words stigma “sign” and ergon “work”: the work 
performed by agents in the environment guides their later actions. The information stored in the 
environment forms a field that supports agent coordination, leading to the term “co[ordination]-
field” for this class of technique [33]. Such techniques are common in biological distributed 
decentralized systems such as insect colonies [38]. A common form of stigmergy is resource 
competition, which occurs when agents seek access to limited resources. For example, if one 
agent consumes part of a shared resource, other agents accessing that resource will observe its 
reduced availability, and may modify their behavior accordingly. Even less directly, if one agent 
increases its use of resource A, thereby increasing its maintenance requirements, the loading on 
maintenance resource B may increase, decreasing its availability to other agents who would like 
to access B directly. In the latter case, environmental processes contribute to the dynamics of the 
state variables involved.  

Different varieties of stigmergy can be distinguished. One distinction concerns whether the signs 
consist of special markers that agents deposit in the environment (“marker-based stigmergy”) or 
whether agents base their actions on the current state of the solution (“sematectonic stigmergy”). 
Another distinction focuses on whether the environmental signals are a single scalar quantity, 
analogous to a potential field (“quantitative stigmergy”) or whether they form a set of discrete 
options (“qualitative stigmergy”). As shown in Table 3, the two distinctions are orthogonal.  

Stigmergic mechanisms have a number of attractive features, particularly for swarming systems.  

Simplicity.—The logic for individual agents is much simpler than for an individually intelligent 
agent. This simplicity has three collateral benefits. 

1. The agents are easier to program and prove correct at the level of individual behavior. 

2. They can run on extremely small platforms (such as microchip-based “smart dust” [43]). 

3. They can be trained with genetic 
algorithms or particle-swarm 
methods rather than requiring 
detailed knowledge engineering. 

Table 3: Varieties of Stigmergy 

 Marker-Based 
(Artificial signs 
inserted in the 

domain) 

Sematectonic 
(Domain elements 

only) 

Quantitative 
(Scalar 
quantities) 

Gradient following 
in a single 
pheromone field 

Ant cemetery 
clustering 

Qualitative 
(Symbolic 
distinctions)) 

Decisions based 
on combinations 
of pheromones  

Wasp nest 
construction 

Scalable.—Stigmergic mechanisms 
scale well to large numbers of entities. 
In fact, unlike many intelligent agent 
approaches, stigmergy requires multiple 
entities to function, and performance 
typically improves as the number of 
entities increases. Stigmergy facilitates 
scalability because the environment 
imposes locality on agent interactions. 
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Agents interact with the environment only in their immediate vicinity. Increases in the number of 
agents are typically associated with an extension of the environment. The density of agents over 
the environment, and thus the processing load on each agent, usually does not increase. 

Robustness.—Because stigmergic deployments favor large numbers of entities that are 
continuously organizing themselves, the system’s performance is robust against the loss of a few 
individuals. Such losses can be tolerated economically because each individual is simple and 
inexpensive. 

Environmental Integration.—Explicit use of the environment in agent interactions means that 
environmental dynamics are directly integrated into the system’s control, and in fact can enhance 
system performance. A system’s level of organization is inversely related to its symmetry 
(Figure 2), and a critical function in achieving self-organization in any system made up of large 
numbers of similar elements is breaking the natural symmetries among them [3]. Environmental 
noise is usually a threat to conventional control strategies, but stigmergic systems exploit it as a 
natural way to break symmetries among the entities and enable them to self-organize. 

We make extensive use of stigmergy in our applications, building on the theoretical foundation 
and pheromone infrastructure outlined in [11]. 

3.1.2 Design Principles Derived from Coupled Processes 
Coupling 1: Use a distributed environment.—Stigmergy is most beneficial when agents can 
be localized in the environment with which they interact by sensing and acting. A distributed 
environment enhances this localization, permitting individual agents to be simpler (because their 
attention span can be more local) and enhancing scalability. 

Coupling 2: Use an active environment.—If the environment supports its own processes, it can 
contribute to overall system operation. For example, evaporation of pheromones in the ants’ 
environment is a primitive form of truth maintenance, removing obsolete information without 
requiring attention by the agents who use that information. 

Coupling 3: Keep agents small.—Agents should be small in comparison with the overall 
system, to support locality of interaction. This criterion is not sufficient to guarantee locality of 
interaction, but it is a necessary condition. The fewer agents there are, the more functionality 
each of them has to provide, and the more of the problem space it has to cover. 

Coupling 4: Map agents to Entities, not Functions.—Choosing to represent domain entities 
rather than functions as agents takes advantage of the fact that in our universe, entities are 
bounded in space and thus have intrinsic locality. Functions tend to be defined globally, and 
making an agent responsible for a function is likely to lead to many non-local interactions. For 
example, in a factory, each machine (an entity) has fairly local interactions with other machines, 
parts, and workers in its area of the plant, but a function (such as scheduling) must take into 
account all of the machines in the entire plant. 

3.2 Autocatalytic Potential 

3.2.1 What is Autocatalysis? 
The concept of autocatalysis comes from chemistry. A catalyst is a substance that facilitates a 
chemical reaction without being permanently changed. In autocatalysis, a product of a reaction 
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serves as a catalyst for that same reaction. An 
autocatalytic set is a set of reactions that are not 
individually autocatalytic, but whose products 
catalyze one another. The result is that the 
behaviors of the reactions in the set are 
correlated with one another. If reaction A speeds 
up (say, due to an increased supply of its 
reagents), so does any reaction catalyzed by the 
products of A. If A slows down, so do its 
autocatalytic partners. This correlation causes a 
decrease in the entropy of the overall set, as 
measured over the reaction rates, so we would 
describe such a system as self-organizing. 

 summarizes these concepts using 
reaction schemata. 
Figure 7
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Figure 7: Relations among Processes.--a) A 
simple reaction. b) D catalyzes the 
conversion of A and B to C. c) An 
autocatalytic reaction. d) An autocatalytic set 
of processes (shown as a ring, but other 
topologies are possible). Not all processes that are coupled, are 

autocatalytic. Autocatalyticity requires a 
continuous closed flow of information among the processes to keep the system moving. If the 
product of process A catalyzes process B, but process B’s products have no effect (either directly 
or indirectly) on process A, the system is not autocatalytic. Furthermore, a system might be 
autocatalytic in some regions of its state space but not in others.  

It is natural to extend this concept from chemistry to any system of interacting processes, such as 
a multi-agent system. A set of agents has autocatalytic potential if in some regions of their joint 
state space, their interaction causes system entropy to decrease (and thus leads to increased 
organization). In that region of state space, they are autocatalytic.  

Figure 8
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Figure 8: Autocatalytic Flows in Pheromone Dynamics 

 exhibits two different approaches to achieving the closed information flow that supports 
autocatalysis in multi-agent systems. 

• The dashed line 
between the two 
agents represents 
conventional 
agent 
interactions: the 
agents perceive 
one another, 
reason about how 
to coordinate 
their activities, 
and then act. The 
information flow 
in this case is 
maintained by 
the agents’ 
perception of one 
another. As the 
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number of agents increases, this approach requires an increasing amount of processing 
power on the part of each agent. If an agent is unable to sense or be sensed by other agents 
in the system, the information flow is broken, and the system’s ability to self-organize will 
be reduced. 

• The stigmergic approach used in swarming is represented by the solid lines forming a 
triangle of “Rational Action,” “Dissipation,” and “Perception.” Agents deposit a 
“currency” (pheromone in the case of ants; money in the case of a market) into a shared 
environment. The aggregation of this currency from multiple deposits, and dissipative 
forces in the environment (evaporation in the case of pheromones), generate gradients that 
each agent can sense and to which it can respond. This continuous cycle provides the 
information flow that keeps the processes coordinated. Because the environment 
integrates the information from each agent, and because agents need sense only their local 
environment, the number of agents can increase without requiring more processing power 
on the part of each agent.  

Two points are important to understand about autocatalyticity. 

1. In spite of the reduction of entropy, autocatalyticity does not violate the Second Law of 
Thermodynamics. The rationalization is most clearly understood in the stigmergic case 
(Figure 8). Entropy reduction occurs at the macro level (the individual agents), but the 
dissipation of pheromone at the micro level generates more than enough entropy to 
compensate. This entropy balance can actually be measured experimentally [39]. 

2. Information flows are necessary to support self-organization, but they are not sufficient. 
A set of coupled processes may have a very large space of potential operating parameters, 
and may achieve autocatalyticity only in a small region of this space. Nevertheless, if a 
system does not have closed information flows, it will not be able to maintain self-
organization. 

3.2.2 Design Principles Derived from Autocatalysis 
Autocatalysis 1: Think Flows rather than Transitions.—Our training as computer scientists 
leads us to conceive of processes in terms of discrete state transitions, but the role of 
autocatalysis in supporting self-organization urges us to pay attention to the flows of information 
among them, and to ensure that these flows include closed loops.  

Autocatalysis 2: Boost and Bound.—Keeping flows moving requires some mechanism for 
reinforcing overall system activity. Keeping flows from exploding requires some mechanism for 
restricting them. These mechanisms may be traditional positive and negative feedback loops, in 
which activity at one epoch facilitates or restrains activity at a successive one. Or they may be 
less adaptive mechanisms such as mechanisms for continually generating new agents and for 
terminating those that have run for a specified period (“programmed agent death”).  

Autocatalysis 3: Diversify agents to keep flows going.—Just as heat will not flow between two 
bodies of equal temperature, and water will not flow between two areas of equal elevation, 
information will not flow between two identical agents. They can send messages back and forth, 
but these messages carry no information that is new to the receiving agent, and so cannot change 
its state or its subsequent behavior. Maintaining autocatalytic flows requires diversity among the 
agent population. This diversity can be achieved in several ways. Each agent’s location in the 
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environment may be enough to distinguish it from other agents and support flows, but if agents 
have the same movement rules and are launched at a single point, they will not spread out. If 
agents have different experiences, learning may enable them to diversify, but again, reuse of 
underlying code will often lead to stereotyped behavior. In general, we find it useful to 
incorporate a stochastic element in agent decision-making. In this way, the decisions and 
behaviors of agents with identical code will diversify over time, breaking the symmetry among 
them and enabling information flows that can sustain self-organization. 

3.3 Function 

3.3.1 How Systems Adjust to Required Function 
Process interaction must support autocatalysis if a system is to support ongoing self-
organization. From an engineering perspective, a further step is necessary. Self-organization in 
itself is not necessarily useful. Autocatalysis might sustain undesirable oscillations or thrashing 
in a system, or keep it locked in some pathological behavior. We want to construct systems that 
not only organize themselves, but that yield structures that solve some problem we need to 
address. There are two broad approaches to this problem, broadly corresponding to the 
distinction in classical AI between the scruffy and the neat approaches. It is likely that as the use 
of self-organizing systems matures, a hybrid of both approaches will prove necessary. 

One approach, exemplified by work in amorphous computing [1, 34], is to build up, by trial and 
error, a set of programming metaphors and techniques that can then be used as building blocks to 
assemble useful systems.  

An alternative approach is to seek an algorithm that, given a high-level specification for a 
system, can compute the local behaviors needed to generate this global behavior. State-of-the-art 
algorithms of this sort are based not on design, but on selection. Selection in turn requires a 
system with a wide range of behavioral potential, and a way to exert pressure to select from this 
wide range of behaviors the ones that are actually desired. 

One way to ensure a broad range of behavioral potential is to construct nonlinear systems that 
can exhibit formally chaotic behavior. From a classical engineering perspective, chaos is 
undesirable because it is unpredictable in the long range. However, from an emergent 
perspective, chaos is desirable because it offers a simple way to sample a broad subset of the 
system’s space of possible behaviors.  

 
Figure 9: Behavioral Diversity in the 
Logistic Function 

We can illustrate this somewhat nonintuitive 
insight with the simple logistic equation  

xt+1 = g xt (1 – xt) 

for 0 ≤ x ≤ 1 and 1 ≤ g ≤ 4. Figure 9 shows a plot 
of the 201st through 500th iterates of this function, 
starting at x = 0.5, for various values of g. The 
plot has three distinct regions. 

• For g < 3, x converges to a single value, 
which depends on g. In this region, the 
system has only a single behavior for each 
value of g. If x is perturbed away from this 
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value, it will quickly return. The system has no behavioral diversity. 

• For 3 ≤ g < 3.569945672…, x oscillates among a number of discrete alternatives. The 
Figure clearly shows regions with two, then four alternatives. In fact, as g approaches the 
upper limit of this range, the number of alternatives doubles repeatedly, so that a value of 
g can be found to yield any number of alternatives that is an integer power of two. 

• For 3.569945672… ≤ g, the system is formally chaotic. In this region, x varies widely 
over its range, and (left to its own behavior) never repeats its position exactly. This region 
offers the broadest behavioral potential for x. 

The behavioral diversity evident in the chaotic regime is useful only if some way can be found to 
lock the system down to a particular behavior, but the basic mechanisms for such control have 
been known for over a decade [36]. The basic idea is to let the chaotic dynamics explore the state 
space, and when the system reaches a desirable region, to apply a small control force to keep the 
system there. 

It may seem that chaos is a complicated way to generate potential behaviors, and that it would be 
simpler to use a random number generator. In fact, virtually all such generators are in fact 
nonlinear systems executing in their chaotic regime.  

In a multi-agent system, the key to applying this generate-and-test insight is finding a way to 
exert selective pressure to keep the system balanced at the desired location. Natural systems have 
inspired two broad classes of algorithm for this purpose: synthetic evolution, and particle swarm 
optimization. 

Synthetic evolution is modeled on biological evolution. Many different algorithms have been 
developed [31], but they share the idea of a population of potential solutions that varies over 
time, with fitter solutions persisting and less fit ones being discarded. The variational 
mechanisms (which usually include random mutation) explore the system’s potential behaviors, 
while the death of less fit solutions and the perpetuation of more fit ones is the control pressure 
that selects the desired behavior. 

Particle swarm optimization [32] is inspired by the flocking behavior of birds. In adaptations of 
this behavior to computation, solutions do not undergo birth and death (as in evolutionary 
mechanisms). Instead, they are distributed in some space (which may be the problem space, or an 
arbitrary structure), and share with their nearest neighbors the best solutions they have found so 
far. Each solution entity then adjusts its own behavior to take into account a blend of its own 
experience and that of its neighbors.  

Market-based bidding mechanisms may be considered a variation on particle swarm 
optimization. The similarity lies in selection via behavioral modification through the exchange of 
information rather than changes in the composition of the population. The approaches differ in 
the use that is made of the shared information. In the particle swarm, agents imitate one another 
based on the information they receive, while in bidding schemes, they use this information in 
more complicated computations to determine their behavior. 
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3.3.2 Design Principles Derived from Functional Adjustment 
Function 1: Generate behavioral diversity.—Structure agents to ensure that their collective 
behavior will explore the behavioral space as widely as possible. One formula for this objective 
has three parts. 

1. Let each agent support multiple functions. 

2. Let each function require multiple agents. 

3. Break the symmetry among the agents with random or chaotic mechanisms. 

The first two points ensure that system functionality emerges from agent interactions, and that 
any given functionality can be composed in multiple ways. The third ensures a diversity of 
outcomes, depending on which agents join together to provide a given function at a particular 
time. 

Function 2: Give agents access to a fitness measure.—Agents need to make local decisions 
that foster global goals, an insight that is supported by formal analysis in Wolpert’s Collective 
Intelligence (COIN) research [47]. A major challenge is finding measures that can be evaluated 
by agents on the basis of local information, but that will correlate with overall system state. 
Determining such measures is a matter for experimentation, although thermodynamic concepts 
relating short-range interactions to long-term correlations have the potential to yield a theoretical 
foundation. In one application, we have found the entropy computed over the set of behavioral 
options open to an agent to be a useful measure of the degree of overall system convergence [12] 
that agents can use to make intelligent decisions about bidding in resource allocation problems. 

Function 3: Provide a mechanism for selecting among alternative behaviors.—If an 
adequate local fitness metric can be found, it may suffice to guide the behavior of individual 
agents. Otherwise, agents should compare their behavior with one another, either to vary the 
composition of the overall population (as in synthetic evolution) or to enable individual agents to 
vary their behavior (as in particle swarm optimization).  

4 HOW can we apply these principles in engineered systems? 
To illustrate the use of these principles, we briefly review several systems, described in more 
detail in other publications, that produce high-level cognitive behavior from swarming. In each 
case we review the problem being solved, summarize the behavior of the local elements, and 
discuss how they reflect the ten design principles outlined in Section 3. 

4.1 Pattern Recognition in a Sensor Network [13] 

4.1.1 The Problem 
Driven by the need for greater efficiency and agility in business and public transactions, more 
and more data is becoming digitally available in real time on computer networks. These 
heterogeneous data streams reflect many aspects of the behavior of groups of individuals in a 
population (e.g., traffic flow, shopping and leisure activities, healthcare needs). A new 
generation of active surveillance systems that integrate a large number of spatially distributed 
heterogeneous data streams may be used in various applications, for instance, to protect a civilian 
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population from bioterrorist attacks, to support real-time traffic coordination systems, to trace 
collaboration structures in terrorist networks, or to manage public healthcare efficiently.  

Active surveillance of population-level activities includes the detection and classification of 
spatio-temporal patterns across a large number of real-time data streams. Approaches that 
analyze data in a central computing facility tend to be overwhelmed with the amount of data that 
needs to be transferred and processed in a timely fashion. Also, centralized processing raises 
proprietary and privacy concerns that may make many data sources inaccessible. Our 
architecture avoids these problems through decentralization. Instead of transferring the data to a 
centralized processing facility, we transfer the processes (fine-grained agents) to the data 
sources. This architecture addresses both of these concerns. Access restrictions may be 
guaranteed through proven local processes. Bandwidth is reduced because long-distance 
communication of data is needed only when the network detects a pattern and needs to invoke a 
higher authority for action. (Ultimately, one would like the response itself to be a distributed 
emergent response, but political realities suggest that in the immediate future self-organizing 
recognition systems will be much more acceptable than self-organizing systems that take action 
on people and property.)  

4.1.2 Summary of Architecture 
We consider a distributed swarming agent architecture the most appropriate answer to the 
challenge of detecting spatio-temporal patterns in a network of heterogeneous sources of 
potentially proprietary real-time data. Instead of attempting to stream a tremendous amount of 
data into a central processing facility, we integrate the external sources into a network for mobile 
agent computing. Essentially, this network of agent processing nodes is a massively parallel 
computer for pattern detection and classification with a unique way of self-organizing the 
processing tasks. 

Into our network of processing nodes we deploy large populations of simple mobile agents that 
coordinate their activities using stigmergy. Each node generates agents at a constant rate, and 
agents die after a fixed lifetime, thus ensuring coverage of the entire area under surveillance. 
Using artificial pheromones, the agents dynamically organize themselves around patterns 
observed in the data streams. The emergence of 
globally coordinated behavior through 
stigmergic interactions among many fine-
grained software agents in a shared 
computational environment is facilitated by a 
component of the distributed runtime 
environment that emulates actual pheromone 
dynamics (aggregation, evaporation, dispersion) 
in the physical world. Our heterogeneous agent 
system continuously executes two parallel 
processes: pattern detection and pattern 
classification. More populations of agents could 
be deployed at any time, for instance to 
introduce additional criteria in the detection 
process, or to add more classification schemes. 

Input IndicatorsInput Indicators

Pattern Pheromones 
Select Patterns

Pattern Pheromones 
Select Patterns

Search Pheromones 
Concentrate Detectors
Search Pheromones 

Concentrate Detectors

Find Pheromones 
Localize Behaviors
Find Pheromones 

Localize Behaviors
 

Figure 10: Stigmergic Pattern Detection 
and Classification The agents executing the detection process 
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(“Detectors”) continuously process the input data and search for spatio-temporal structures, using 
two sets of flavors of pheromones. Detectors use Search pheromones to mark suspicious areas of 
the network and attract other detectors to confirm their discovery. A second set of Find 
pheromones, which require more deposits to stabilize, is used to record this confirmation, 
informing a local node that it is likely to be an instance of the pattern in question and enabling it 
to take appropriate action. Detectors search for unusually high differences in the data streams of 
neighboring locations in the network. 

“Classifier” agents are responsible for the classification of the detected patterns according to a 
particular classification scheme. The pattern classification scheme used in our demonstration 
correlates the detected patterns with a particular, dynamically changing geographic direction 
(wind, modeling the dispersion of a bioterrorist weapon). The Classifiers move in a way that 
models the pattern being sought, and deposit a Pattern pheromone when they encounter a pattern 
that matches their behavior. 

Figure 10 shows the performance of the algorithm. The upper-left display is a grid in which each 
cell is set either to a random mixture of Red-Green-Blue, or to white. Viewing the overall 
display, we can see that the white cells are different from the mass of the other cells, and that 
they are arranged in extended patterns. However, a single cell with only local knowledge of its 
neighborhood can know neither of these facts. The upper-right display shows the Search 
pheromones deposited by Detectors searching for unusual cells, based on their recent experience. 
The high propagation of these pheromones creates gradients that attract other Detectors for 
confirmation. As more and more Detectors agree that the cells are indeed unusual, Find 
pheromone (lower right) accumulates to mark the location of the unusual cells. Finally, 
“Classifier” agents moving diagonally across the field sense repeated Find pheromones aligned 
with their movement and mark them with Pattern pheromone to indicate an instance of a 
particular structure of interest. 

4.1.3 Principles 
Coupling 1: Use a distributed environment.—The network of data collection nodes is 
distributed over space. For spatio-temporal pattern recognition, each data collection node 
maintains a temporal data structure to distribute agent interactions in time as well. 

Coupling 2: Use an active environment.—The environment implements the basic pheromone 
dynamics of Aggregation (fusion of observations from multiple agents), Propagation 
(communication), and Evaporation (truth maintenance). 

Coupling 3: Keep agents small.—Both data nodes and mobile agents are small compared with 
the overall system, and all interactions are local. No single agent can solve the problem. No data 
node can know on its own that it is part of a pattern being sought, nor can any individual 
Detector or Classifier confirm the detection or classification without collaboration by its 
colleagues. 

Coupling 4: Map agents to Entities, not Functions.—The data nodes correspond to distributed 
data sources in the physical domain. The Detectors and Classifiers are not domain entities, but 
neither does any one of them implement a function by itself. Detection and Classification emerge 
from the interactions of multiple Detectors and Classifiers. It is perhaps best to think of the 
Detectors and Classifiers as instances of hypotheses about structures in the environment, 
hypotheses that are confirmed or discredited through the stigmergic interactions.  
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Autocatalysis 1: Think Flows rather than Transitions.—The fundamental information flow in 
this application is the pheromone loop illustrated in Figure 8. 

Autocatalysis 2: Boost and Bound.—Search pheromone builds up through positive feedback: 
the more is deposited, the more Detectors come to that area and the more they deposit Search 
pheromone. If unrestrained, this reinforcement could lead to all Detectors becoming concentrated 
in one area, leaving other regions unexplored. Bounds on system dynamics are provided by the 
programmed death of agents and their continual rebirth at nodes distributed throughout the area. 

Autocatalysis 3: Diversify agents to keep flows going.—This architecture has three main 
species of agents among which information flows: data nodes, Detectors, and Classifiers. 

Function 1: Generate behavioral diversity.—Each function (detection and classification 
requires multiple agents. It is less clear in this case that each agent performs multiple functions. 
However, agents do differ from one another.  

• The birth location of each Detector or Classifier varies across the search area.  

• A key behavioral parameter of mobile agents in this application is a threshold that 
indicates how distinct a data node must be from others that the agent has seen recently 
before it will deposit a pheromone. This threshold is randomly generated. 

• Agents’ movements, while influenced by local pheromone gradients, always incorporate a 
stochastic component. The pheromone strength in nearby nodes is used to weight a 
roulette wheel that determines the probability that the agent will move to each of those 
nodes in the next step. 

Function 2: Give agents access to a fitness measure.—The pheromone fields accumulate 
information about outlying nodes and extended patterns that combine the observations of many 
mobile agents that have followed different individual trajectories. Thus they are locally 
accessible repositories of information gathered over a much broader area, providing a local view 
of the global state of the problem. 

Function 3: Provide a mechanism for selecting among alternative behaviors.—Mobile 
agents adjust their detection thresholds using a variation of particle swarm optimization.  

4.2 Searching and Imaging with Unmanned Air Vehicles [40] 

4.2.1 The Problem 
Some sensing problems (e.g., three-dimensional imaging with synthetic aperture radar) requires 
the coordination of multiple sensing platforms. Consider a swarm of unpiloted air vehicles 
(UAV’s) whose task is to locate and image potential targets hiding under dense foliage. The 
swarm must achieve three objectives that require different behaviors on the part of individual 
UAV’s. 

In searching, each UAV must effectively cover a large search space and revisit locations 
regularly, maximizing detection probability based on known characteristics of the target (e.g., 
visibility angle), while not exhibiting any obvious systematic search patterns that would permit 
mobile targets to execute simple avoidance strategies. A single sensor can generate enough 
information to suggest the presence of a target, though it cannot image the target by itself. 
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When a vehicle detects a target, it announces the location of 
the target, and vehicles that receive this announcement begin 
a coordinated imaging task. In this phase, each vehicle must 
collect data from varying angles along linear trajectories 
(box) while minimizing both the effort (the number of 
required vehicles and the distance they must move) and the 
data collection time (by collecting data in parallel). 

 

Figure 11: Visitation 
Pheromone Map of one UAV in 
the Swarm 

In addition, individual vehicles require periodic refueling or 
other maintenance, and the swarm must ensure that 
individual vehicle requirements are met without 
compromising the ability of the overall swarm to continue 
functioning. 

4.2.2 Summary of Architecture 
Our stigmergic approach to this problem uses digital pheromones. An important contrast with the 
pheromone mechanisms in our other two example applications is that while those applications 
envisioned a network of physical nodes maintaining the pheromone field externally to the agents, 
in this case each agent maintains an internal pheromone map that tiles the search space into 
discrete cells. Each cell is a place in a pheromone infrastructure, which means that the agent that 
controls the vehicle may deposit and sense digital pheromones of different flavors in that cell. In 
principle, agents could propagate these maps to one another through local interaction, thus 
achieving a stigmergic analog to the DAI technique of partial global planning [19], but even 
without generating such a “global distributed view,” the local iconic representation has 
significant benefits over more conventional robotic techniques such as occupancy maps. 

During search, when a vehicle passes through the area in the search space that is assigned to a 
particular cell, it deposits a unit of the visitation pheromone into that cell in its internal map. In 
addition, the agent broadcasts its location, and the agents of any other vehicle within 
communications reach then deposit a visitation pheromone into their maps too. Thus, the agents 
mark cells that some member of the swarm has already visited. Figure 11 shows a snapshot of 
the visitation pheromone map of one agent in the swarm. 

Local concentrations of pheromones lose strength over time, which enables the swarm to 
“forget” visitations to locations that occurred a long time ago. This knowledge management 
process ensures that the search process keeps revisiting locations in case targets have moved in. 

The individual agent decides its vehicle’s trajectory based on its internal map of visitation 
pheromones. Once it has reached its previous goal, the agent probabilistically selects a new 
location. The probability of the selection of a particular location is inversely proportional to its 
distance to the vehicle’s current location and to the strength of the visitation pheromone 
concentration in the cell that covers this location. Thus the agents tend to prefer nearby locations 
that have not been visited recently, and collectively explore the whole search space. 

An agent that detects a potential target dynamically forms an imaging team. Team formation is a 
collaborative process in which agents bid for a role in the team depending on the match of the 
vehicles’ imaging capabilities with the role’s requirements (hard constraint) as well as the 
current distance of the eligible vehicles to the detected target (soft constraint). 

10/31/2003 12:12 PM  Page 21 



 Engineering Swarming Systems  

Once roles are assigned, the team members plot the optimal trajectories for their respective data 
acquisition flight and execute the imaging task. Depending on the imaging modality (coherent 
vs. non-coherent), the data acquisition may be executed individualistically or synchronized 
across the team. Once the task is completed, the team disbands and the agents resume their 
search behavior. 

A team-based approach to maintenance can accommodate UAV’s with different fuel 
consumption rates, as well as variations in the availability of maintenance resources at the base. 
UAV’s deposit a pheromone flavor that communicates the intensity of their current desire for 
maintenance, while the base propagates a pheromone indicating its current level of load. A 
UAV’s decision to shift into the maintenance role is promoted by its own desire for refuel and 
inhibited by the level of refueling pheromone it senses from neighboring UAV’s and the load 
pheromone propagated from the base.  

Figure 12
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Figure 12: Stigmergic Role Differentiation 

 shows a screen shot of this system. Most of the UAV’s are scanning the area in search 
mode, but four have formed a verification team to image a suspected target, while one is one its 
way back to the refuel station. 

4.2.3 Principles 
Coupling 1: Use a distributed environment.—The pheromone environment maintained by 
each UAV is not distributed, but locality of interaction among UAV’s is enforced by their 
geographical dispersion over the search area. 

Coupling 2: Use an active environment.—The pheromone environment implements the usual 
pheromone dynamics of aggregation, propagation, and evaporation. In addition, each UAV’s 
physical environment includes the other UAV’s, whose behaviors change based on their 
individual experiences. 

Coupling 3: Keep agents small.—No single UAV can do the entire task. At least four are 
needed to image a target, and even more are 
required to maintain a high level of search. 

Coupling 4: Map agents to Entities, not 
Functions.—The agents in this system 
correspond to physical UAV’s. 

Autocatalysis 1: Think Flows rather than 
Transitions.—The main information flows in 
this system are the pheromone flows of 

, and the communications flows between a 
UAV that has detected a target and the other 
UAV’s whom it seeks to recruit to perform 
imaging. 

Figure 
8

Autocatalysis 2: Boost and Bound.—A 
UAV’s attraction to an imaging team is based 
on positive feedback, while the visitation map 
approach to dispersing the UAV’s is an 
example of negative feedback.  
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Autocatalysis 3: Diversify agents to keep flows going.—UAV’s are diverse in their location. In 
addition, each UAV decision (the angle at which to traverse the search area in search mode, 
whether to join an imaging team, whether to return for refueling) is stochastically weighted. 

Function 1: Generate behavioral diversity.—Each function requires multiple agents, and each 
agent supports all three functions. Symmetry among agents is broken by making decisions with 
weighted stochastic functions. 

Function 2: Give agents access to a fitness measure.—Several fitness functions influence 
agent behavior. A UAV’s proximity to another that has sensed a target, and its sensory 
configuration, influence whether it joins an imaging team. Its current fuel level and the load level 
of the base influence whether it enters maintenance mode. 

Function 3: Provide a mechanism for selecting among alternative behaviors.—Agents 
decide whether to image based on a collective sharing of information in a bidding process. 
Agents decide whether to enter maintenance mode based on their own fuel level and the load at 
the base. 

4.3 Dynamic Target Selection and Path Planning [41, 42] 

4.3.1 The Problem 
The current generation of UAV’s reduces the threat to human operators, but leaves several 
problems unresolved. 

• It does not decrease the manpower requirements. Each aircraft requires a flight crew of 
one to three people, so deploying large numbers of UAV’s requires committing and 
coordinating many human warfighters.  

• The high-bandwidth needed for linking the flight crew to the aircraft places severe 
constraints on available communications resources.  

• Fusion of information from multiple sources (satellite imagery, sensors on UAV’s, 
unattended ground sensors, information from special forces in the field) is a continuing 
challenge. 

We want a UAV to be able to manage the details of its own mission, avoiding dynamic threats as 
soon as they arise and planning its path to optimize its movement through the battlespace. 

4.3.2 Summary of Architecture 
Like our other two examples, this application uses digital pheromones. These pheromones live in 
a network of place agents, which represent regions of the battlespace. All place agents can run 
on a single computer for simulation purposes, but in actual deployment each place agent might 
run on an enhanced unattended ground sensor (UGS) placed in the battlespace by air drops or 
artillery and responsible for any location to which it is closer than any other UGS. We refer to 
such an enhanced UGS as a HOST (Hostility Observation and Sensing Terminal). Each place 
agent is a neighbor to a limited set of other place agents, those that are responsible for adjacent 
regions of space, and it exchanges local information with them. In addition to place agents, the 
system includes walker agents, representing physical resources such as UAV’s. Walker agents 
move through the battlespace by interacting with the place agent for each region that they visit. 
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Place agents and walker agents are software entities, while HOST’s and UAV’s are the hardware 
in which they run. 

Threat Pheromones Target Pheromones Path PheromonesThreat Pheromones Target Pheromones Path Pheromones
 

Figure 13: Pheromone Flavors in Emergent Path Planning 

Each place agent maintains a scalar variable corresponding to each pheromone flavor. It 
augments this variable when it receives additional pheromones of the same flavor (whether by 
deposit from a walker agent, from its own sensors, or by propagation from a neighboring place 
agent). It also evaporates the variable over time, and propagates pheromones of the same flavor 
to neighboring place agents based on the current strength of the pheromone. Different flavors 
may indicate the presence of a threat that should be avoided in the place’s region or the presence 
of a target that should attract UAV’s. 

The development of a path by a natural ant colony depends on the stochastic interaction of many 
ants, some of whom wander off and die. Current UAV’s such as the Predator and the Global 
Hawk are far too expensive to use in a stochastic search mode. Instead, each UAV’s walker 
agent periodically emits ghost agents, software agents without a corresponding hardware 
resource. These ghost agents are attracted by target pheromone and repelled by threat 
pheromones, and lay down a path pheromone to store the results of their explorations. 
Reinforcement of this path pheromone by multiple ghosts leads to the emergence of a path that 
the UAV then follows. (Recent advances in inexpensive micro-UAV’s opens up the potential for 
having the UAV’s themselves swarm, as in the example discussed in Section 4.2.) 

Figure 13 illustrates the functions of the different pheromones in this process. On the left, 
intelligence about threats is translated into threat pheromones that propagate only a short 
distance, since their purpose is not to attract distant ghosts, but to prevent nearby ones from 
wandering into danger. In the center, intelligence about targets results in target pheromones that 
propagate widely, attracting ghost agents. The higher-priority target (to the west) emits 
pheromone at a higher rate, thus generating a broader field. The right-hand display shows the 
path pheromones deposited by the ghost. A UAV following the ridge of this field will be 
attracted to the appropriate target, while avoiding intervening threats. 

4.3.3 Principles 
Coupling 1: Use a distributed environment.—The network of HOST’s provides an 
environment that is physically distributed throughout the battlespace. 
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Coupling 2: Use an active environment.—The HOST’s implement the pheromone dynamics of 
aggregation, propagation, and evaporation. 

Coupling 3: Keep agents small.—Intelligence about the battlespace is not concentrated in a 
single machine, but maintained across many HOST’s, each responsible for a small region. The 
path planning is done by ghost agents, which are small compared with the UAV’s walkers. (In 
our experiments, each walker has about 300 concurrent ghosts.) 

Coupling 4: Map agents to Entities, not Functions.—Agents correspond to physical regions 
and resources. 

Autocatalysis 1: Think Flows rather than Transitions.—The basic flow is the pheromone 
cycle of  Figure 8. 

Autocatalysis 2: Boost and Bound.—Path emergence among the ghosts is the result of positive 
feedback as they respond to path pheromones already in place, combined with the bounding 
influence of pheromone evaporation over time. The ghost population is maintained by 
continuous birth and programmed death. 

Autocatalysis 3: Diversify agents to keep flows going.—The system uses three main species of 
agents: place agents, walker agents, and ghost agents. In addition, different resources have 
different walkers, different regions have different place agents, and ghosts diversify themselves 
through stochastic movement. Walkers and ghosts deposit and sense pheromones in the place 
agents, and thus pass information among themselves. 

Function 1: Generate behavioral diversity.—The system’s main function is path planning, in 
which all agents participate without any of them dominating. An important class of diversity 
among ghost agents is the equation by which they translate pheromone levels that they sense in 
their immediate environment into movement decisions. Originally, we hand-tuned the parameters 
of this equation. We found improved performance when we allowed the parameters to vary 
around the hand-tuned mean, and even more improvement when we evolved the parameters [44]. 

Function 2: Give agents access to a fitness measure.—The speed with which a ghost reaches a 
potential target and returns home is a good measure of the fitness of its search parameters, so we 
use the lifetime remaining to a ghost as its fitness measure.  

Function 3: Provide a mechanism for selecting among alternative behaviors.—We use a 
variety of the genetic algorithm for adjusting the distribution of search parameters in the ghost 
population. An important characteristic of our application is that this adaptation happens as the 
system operates, not in an off-line planning process. 

5 Conclusion and Prospect 
Swarming systems have demonstrated their effectiveness as an alternative model of cognition. 
This experience is leading to a growing body of engineering knowledge for the deployment of 
such systems. They are best suited for resource-constrained systems of discrete interacting 
elements that exhibit distribution, decentralization, and dynamic change. The self-organization 
that gives these systems their power requires not only interaction among the agents, but the 
potential for autocatalytic loops, and some mechanism (such as synthetic evolution or particle 
swarm optimization) for selecting appropriate behaviors from a wider repertoire based on some 
fitness function. We have deployed these mechanisms successfully in a number of applications, 
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including distributed pattern recognition, team formation and management, dynamic target 
selection and path formation, resource allocation, document search and retrieval, and ecosystem 
management.  

This engineering perspective on swarming systems recognizes that for some applications or 
problems, conventional cognitive techniques may be more appropriate. Now that we understand 
where swarming systems are appropriate and some of the principles that enable them, the next 
challenge is integrating them with more conventional cognitive systems. We are pursuing several 
lines of research in support of hybrid agent systems, including 

• using swarming systems as internal “brains” for more conventional cognitive systems; 

• integrating fine-grained and coarse-grained agents as peers in a single system, with fine-
grained agents providing ease of implementation and reduced need for knowledge 
engineering, while coarse-grained agents provide a clearer cognitive interface to human 
stakeholders; 

• developing mathematical methods for imputing cognitive behavior to non-cognitive 
agents in support of integration with cognitive agents; 

• developing a design and specification methodology at a sufficiently abstract level that it 
can be applied to either class of agent. 
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