
 Engineering Swarming Systems

Engineering Swarming Systems
H. Van Dyke Parunak and Sven A. Brueckner

Altarum Institute
{van.parunak, sven.brueckner}@altarum.org

Abstract
Most multi-agent systems are inspired by classical AI, whose objective was to realize human-
level intelligence in a computer. As the field has moved toward multiple agents, there has been a
presumption that individual agents still aspire to high-level intelligence. Swarming systems
follow an alternative model, inspired more by artificial life than artificial intelligence. The
individual agents in these systems may be non-cognitive, but complex, robust cognition emerges
from their interactions. This paper defines swarming and the concepts of self-organization and
emergence that underlie it. It describes the kinds of problems for which it is well suited, explores
why it functions, and outlines some initial principles of an engineering methodology for
developing artificial swarming systems.

1 WHAT is Swarming?
We define swarming as “useful self-organization of multiple entities through local interactions.”
We begin by reviewing other definitions, then focus in on organization and self-organization,
and the relation of these concepts with emergence.

1.1 Swarming
Definitions of swarming have been proposed by insect ethologists, roboticists, and military
historians. Of the many definitions that have been proposed, a few will illustrate the main
themes.

Students of biological systems use it
to describe decentralized self-
organizing behavior in populations
of (usually simple) animals [9, 10,
14, 38]. Swarming has been defined
(e.g., [10]) as “distributed problem-
solving devices inspired by
collective behavior of social insect
colonies and other animal
societies.” Table 1 lists a few
examples that have been studied.

Table 1: Some Examples of Swarming in Nature

Swarming Behavior Entities
Pattern Generation Bacteria, Slime Mold
Path Formation Ants
Nest Sorting Ants
Cooperative Transport Ants
Food Source Selection Ants, Bees
Thermoregulation Bees
Task Allocation Wasps
Hive Construction Bees, Wasps, Hornets,

Termites
Synchronization Fireflies
Feeding Aggregation Bark Beetles
Web Construction Spiders
Schooling Fish
Flocking Birds
Prey Surrounding Wolves

The use of the term to describe
artificial systems can be traced to
Beni, Hackwood, and Wang in the
late 1980’s [4-7, 26, 27]. Their work
focuses on populations of cellular
robots, and they use the term to
describe self-organization through

10/31/2003 12:12 PM Page 1

vparunak
Forthcoming in F. Bergenti, M.-P. Gleizes, and F. Zambonelli, eds., Methodologies and Software Engineering for Agent Systems. Kluwer, 2004.

 Engineering Swarming Systems

local interactions. In the context of unpiloted air vehicles (UAV), Clough defines a swarm as a
“collection of autonomous individuals relying on local sensing and reactive behaviors interacting
such that a global behavior emerges from the interactions” [16]. He distinguishes swarming
(resulting from reactive behaviors of simple homogeneous entities performing simple tasks) from
the emergent behavior of heterogeneous teams of deliberative entities performing complex tasks.
Recently, “swarming” has come into vogue in the military to describe a battlefield tactic that
involves decentralized, pulsed attacks [2, 20, 21, 30]. Military historians focus less on the
process of self-organization and more on the resulting organization itself: “the systematic pulsing
of force and/or fire by dispersed, internetted units, so as to strike the adversary from all
directions simultaneously” [2]; a “scheme of maneuver” consisting of “a convergent attack of
several semi-autonomous (or autonomous) units on a target” [21]. The connection with insect
applications is not coincidental. Insect self-organization is robust, adaptive, and persistent, as
anyone can attest who has tried to keep ants out of the kitchen or defeat a termite infestation, and
military commanders would love to be able to inflict the frustration, discomfort, and
demoralization that a swarm of bees can visit on their victims. The linkage between swarming
and warfare is ancient. In the Bible, God promises to demoralize the indigenous population of
Canaan before the invading Israelites in the words, “I will send the hornet before you” (Exodus
23:28; cf. Deuteronomy 7:20; Joshua 24:12). In the eighteenth dynasty (1550 BC), the ancient
Egyptians awarded military heroes a gold and silver medal in the form of a stylized fly ()
[29], and there is evidence that the ancients sometimes hurled hives of stinging insects against
their enemies [35].

Figure 1

Figure 1: Egyptian “fly” medal
for military heroes, 1550 BC
(National Gallery of Art)

For the purpose of this paper, we will define swarming as “useful self-organization of multiple
entities through local interactions.” This definition highlights elements of the others that have
been suggested.

“Useful” emphasizes that we are interested in engineering systems that are answerable to
someone outside of the system boundary for their behavior.
Some forms of self-organized behavior, such as riots and
oscillation, might be interesting to a biologist, but
undesirable in a commercial or military application.

Self-organization is most prominent in the robotic
definitions, since the concern there is to distinguish
swarming from conventional top-down control schemes.
The military definition does not emphasize self-
organization, perhaps because of a historic tradition of top-
down centralized control. We do not require that the self-
organization result from reactive rather than deliberative
individual behavior. Thus our definition includes not only
Clough’s “swarms” but also his “teams,” if they meet the
other terms of the definition.

The notion of multiple entities is common to all
definitions, and indeed is intrinsic to the common-sense use
of the term. A major motivator for swarming is the
proliferation of autonomous platforms, such as vehicles,
communications systems, and sensor systems. Although

10/31/2003 12:12 PM Page 2

 Engineering Swarming Systems

these systems are often referred to as “unmanned,” in current practice it would be more accurate
to describe them as “remotely manned.” The flight crew for a Predator UAV consists of two
people. Housing them in a control van rather than on board the flying platform considerably
reduces their risk, but does not reduce the manpower requirements for fielding the vehicle. A
major promise of swarming is multiplying the number of platforms that a single person can
effectively control.

Our focus on local interactions has two motivations: a need and a promise. The need is a
growing concern about communication congestion. The promise is the observation that local
interactions suffice to maintain long-range coordination in biological systems, so that we ought
to be able to reverse-engineer the underlying mechanisms for use in synthetic systems.

1.2 Organization
As used in expressions such as “self-organization,” the word “organization” has at least three
distinct, but related, meanings: it can refer to a mapping, a process, or a structure.

Organization1 is a mapping from a system to an ordered set, e.g.,

Such a mapping permits us to say that one system is “more organized” than another (or than the
same system at a different time).

Different detailed definitions for this mapping are possible. Common themes will include
entropy and symmetry, as illustrated in Figure 2.

Denote a system by an upper-case letter, and its elements as the same letter in lower-case,
indexed. Thus A = {a1, …, an} and B = {b1, …, bk} denote two systems. The entropy of a system
A is denoted by S(A). With these concepts, we can meaningfully assert Org(A) > Org(B) if

• S(B) > S(A) or

• B has a higher order of symmetry than A

Entropy can be computed against different bases, such as the spatial distribution of agents, their
directions of movement, the behaviors open to them at any moment, or the time series generated
by their actions. This variety can lead to the concern that entropy, and thus organization1, is in
the eye of the beholder. In fact, methods exist for defining changes in entropy in an unambiguous
way [17, 46], though discussing them in detail is beyond the scope of this survey.

Organization2 is a process in a single system in which Organization1 increases with time:

Org(A(t2)) > Org(A(t1)), t2 > t1

Organization3 is the structure resulting from Organization2, and can be measured with
Organization1.

Increasing Organization

Increasing Symmetry

Increasing Entropy

Increasing Organization

Increasing Symmetry

Increasing Entropy

Figure 2: Symmetry vs. Organization

1.3 Self-Organization and
Emergence

With this understanding of
“organization,” it would seem natural to
define “self-organization” as a process
(Organization2) that reduces the entropy

10/31/2003 12:12 PM Page 3

 Engineering Swarming Systems

of a system without external intervention (motivating the modifier “self”). This definition is in
line with some that have been proposed in the literature, for example:

Camazine [14]: “Pattern formation occurs through interactions internal to the system,
without intervention by external directing influences (leaders, blueprints, recipes,
templates)”

Bonabeau [10]: “A set of dynamical interactions whereby structures appear at the global
level of a system from interactions among its lower-level components. … The rules
specifying the interactions are executed on the basis of purely local information, without
reference to the global pattern.”

These definitions emphasize the system boundary (through terms such as “local” and “internal”).
The second includes three other concepts as well:

• A distinction of multiple levels within a system

• “Interactions” among entities at lower levels of the system

• The “appearance” or “emergence” of properties and structures at higher levels from these
interactions

Other definitions of “self-organization” rely only on these three themes, without focusing on the
system boundary, for example:

Biebricher [8]: The process by which individual subunits achieve, through their
cooperative interactions, states characterized by new, emergent properties transcending
the properties of their constitutive parts

Schweitzer [45]: The emergence of new system properties not readily predicted from the
basic equations.”

To achieve greater precision, we propose distinguishing between self-organization and
emergence on the basis of the contrast between the horizontal concept of system boundary and
the vertical concept of levels (). Figure 3

Self-Organization

Em
ergence

Self-Organization

Em
ergence

Figure 3: Comparing Self-Organization and
Emergence

We define Self-Organization as organization Among elements within a level

• Without information flow across the boundary.

The second law of thermodynamics demands that there be energy flow across the boundary of
any system whose organization increases over time. Self-organization requires that this energy
flow not contain information. This definition depends critically on the location of the system
boundary. If the boundary is moved,
a system’s character as self-
organizing or not may change.

10/31/2003 12:12 PM Page 4

 Engineering Swarming Systems

We define Emergence as a subcategory of self-
organization (Figure 4). Emergence (as we use the term)
describes the appearance of structures at a higher level
that are not explicitly represented in lower-level
components. The reliance of swarming systems on
locally available information makes it difficult for them
to reason explicitly about higher-level structures, so
emergence tends to be an important mechanism in
swarming systems.

Neither self-organization nor emergence is necessarily
good. The formation of structures will correspond to a
reduction in entropy, whether those structures support or
frustrate the objectives of the system stakeholders. The fact that emergent structures can be
pathological (as in the case of race conditions or herding behavior) may explain the apprehension
with which some people view emergence. For example, Wooldridge and Jennings assert [48],
“Emergent functionality is akin to chaos ….” They urge engineers of agent systems to “severely
restrict the way in which agents can interact with one-another … ensure that there are few
channels of communication between agents … restrict the way in which agents interact” in order
to reduce the likelihood of emergent behavior. A consequence of this restriction is that any
desired system-level behavior must be explicitly represented in the lower-level components, a
requirement that is difficult to meet if the system’s requirements include responding gracefully to
unanticipated changes in its environment. Our alternative approach is to develop principles for
designing and developing systems whose emergent behavior is beneficial or at least benign.

Self Organization
e.g., Classical
MAS Emergence

e.g., Ant Path
Formation

Organization2
e.g., Hierarchical Contol

Figure 4: Emergence as a
Subcategory of Self-Organization

This difference in vision leads to two distinct approaches to building multi-agent systems (
).

Figure
5

System-Level
Structure

Fine-
Grained
Agent

Coarse-
Grained
Agent

Reaction BDI

ExploitationExploration
SymbolicNon-Symbolic

DeliberationEmergence

ExploitationExploration
SymbolicNon-Symbolic

DeliberationEmergence

Figure 5: Two Families of Self-Organizing Systems

• Classical multi-agent systems achieve self-organization through deliberation among fairly
sophisticated (“coarse-grained”) agents. Emergent systems can use much simpler reactive
agents.

• Reasoning in emergent self-organization is often non-symbolic, while classical systems
are usually symbolic.

• Because of the need for representing system-level behavior explicitly at all layers, non-
emergent systems are
best suited for exploiting
well-known
environments. The ability
of emergent systems to
produce new behaviors is
appropriate for more
exploratory problems.

A front line of our current
research is understanding how
to hybridize these two families
of systems.

10/31/2003 12:12 PM Page 5

 Engineering Swarming Systems

1.4 Alternatives to Self-Organization
Camazine [14] identifies four alternatives to self-organization: leaders, recipes, blueprints, and
templates.

• A leader is a single agent that receives status information from the other agents, decides
on the action that each should take, and issues commands. This paradigm is sometimes
called “centralized control.” If the leader is not part of the system, the flow of the leader’s
commands to the other agents crosses the system boundary.

• A recipe is a script (a process description that is sequenced in time) that is constructed by
the system’s designer and installed at compile-time. If the designer is not part of the
system, this script crosses the system boundary when it is installed.

• A blueprint is a map (a spatial prescription) that is constructed by the system’s designer
and installed at compile-time. If the designer is not part of the system, this map crosses the
system boundary when it is installed.

• A template is a structure in the system’s environment (e.g., the walls of a soccer arena)
that constraints the system’s behavior. If this structure is not part of the system,
information about it crosses the system boundary as the system interacts with it.

It is useful to keep these alternatives in mind for two reasons. First, self-organization is not the
best answer for every problem. In some cases, an alternative approach may be preferable, and
responsible engineering requires awareness of these alternatives. Second, in each case, the
system can be made self-organizing by expanding the system boundaries to include the source of
the information. Thus many agent architectures include a (software) leader that directs the
actions of the other agents. The engineer must carefully specify the system boundary, and may
be able to adjust the behavior of the system significantly by shifting the boundary.

2 WHERE would you want to use Swarming?
Five domain features indicate the appropriateness of swarming: discreteness, deprivation,
distribution, decentralization, and dynamism.

2.1 Discrete
It is easiest to apply agents (whether self-organizing or not) to a domain if the domain consists of
discrete elements that can be mapped onto the agents. Some forms of organization3 also are
achieved most naturally in a discrete system, for example, those that are characterized as a graph
structure of some sort.

2.2 Deprived (Resource-Constrained)
We say that a system is “deprived” (or resource constrained) when limits on resources (such as
processing power, communications bandwidth, or storage) rule out brute-force methods. For
instance, if enough communications bandwidth is available, every agent can communicate
directly with every other agent. If agents have enough processing power, they can reason about
the massive input they will receive from other agents. If they have enough storage, they can
maintain arbitrarily large sets of instructions telling them what to do in each circumstance.

10/31/2003 12:12 PM Page 6

 Engineering Swarming Systems

Under such assumptions, swarming architectures would seem to have little benefit. Some
futurists extrapolate the historically exponential increases in hardware processing power, storage,
and bandwidth, and claim that these constraints will quickly disappear. At the hardware level,
Moore’s law and its analogs for bandwidth and storage give good reason to be optimistic.
However, a computer system is more than hardware. It is constrained by theoretical,
psychological, commercial, and physical issues as well. For example:

• No matter how much storage is available, the knowledge engineering effort required to
construct large knowledge bases remains a formidable psychological obstacle to
completely defining the behavior of every agent.

• No matter how fast processors get, the theory of NP-completeness points out that the time
required to solve reasonably-sized problems in many important categories will still be
longer than the age of the universe. An important instance of this challenge is the truth
maintenance problem, the challenge of detecting inconsistencies in a knowledge base that
result from changes in the world, which is NP-hard for reasonably expressive logics.

• No matter how much bandwidth the hardware can support, the market may not make it
available in the configuration needed for a specific problem. Military planners, for
instance, have long counted on the availability of commercial satellite channels, but the
commercial market has moved toward land-based fiber backbones, resulting in a major
shortfall in projected available bandwidth for military deployments in underdeveloped
areas.

• The growing emphasis on Pervasive Computing and nanotechnology requires the
deployment of computation on very small devices. The physical limitations of such
devices will not permit them to support the level of processing, storage, and
communications that can be realized on unconstrained devices.

Several characteristics of swarming systems make them good candidates for deprived
environments. For example,

• Interactions among system components are typically local. If information needs to move
long distances, it does so by propagation rather than direct transfer. Local interactions
limit the number of neighbors about whom each agent must reason at a time, and enable
the use of low-power transmissions that permit bandwidth to be reused every few
kilometers.

• Because system-level behaviors do not need to be specified at the level of each element,
the knowledge engineering and storage requirements are greatly reduced.

• Emergent systems commonly maintain information by continuously refreshing current
information and letting obsolete information evaporate. This process guarantees that
inconsistencies remove themselves within a specified time horizon, without the need for
complex truth-maintenance procedures.

2.3 Distributed
The notion of “local interactions” is central to our definition of swarming. Keeping interactions
local is a powerful strategy for dealing with deprived systems, but requires that the entities in the
problem domain be distributed over some topology within which interactions can be localized.

10/31/2003 12:12 PM Page 7

 Engineering Swarming Systems

The most common topology is a low-dimensional Euclidean manifold, or a graph that can be
embedded in such a manifold. For example, insect stigmergy takes place on physical surfaces
that, at least locally, are embedded in two-dimensional manifolds. Most engineered applications
of swarming such as path planning [42], pattern recognition [13], sensor network self-
organization, and ant-colony optimization [18], follow this pattern. In these applications, locality
can be defined in terms of a distance metric, and enforced by physical constraints on
communications (e.g., a node’s neighbors are all the other nodes with whom it has radio contact).

More recent work (for instance, in telecommunications [28], or in our laboratory, on semantic
structures) successfully mediates agent interactions via scale-free small-world graphs. Such
graphs have long-range shortcuts and so are typically not embeddable in low-dimensional
manifolds. These shortcuts pose problems for classical definitions of distance, but locality of
interaction can still be defined in terms of nearest-neighbor graph connectivity, and the empirical
success of these latter efforts shows that this form of locality is sufficient to achieve
coordination.

2.4 Decentralized
As a system characteristic, decentralization is orthogonal to distribution. In a centralized system,
all transactions require the services of a single distinguished element. If the system is not
distributed, the central point and the system are identical. If it is distributed, the central point is
one of the elements, with which the others must communicate. A common extension of
centralization in a distributed system is the hierarchy, in which the central element for a small
group of nodes joins with other nodes at its level in reporting to a yet higher central element, and
so on until the top node is reached.

Swarming can be a poor choice for applications that require centralization. The restriction to
local interactions means that communications between peripheral elements and the central
element is an emergent behavior of the system, which may not meet the quality of service
requirements or the need for detailed predictability that often lead to a requirement for central
control. However, systems designers should be cautious about accepting a centralized
architecture. Such architectures have at least three weaknesses.

1. They are inherently resistant to increases in scale. As the system grows, the capacity of
the central element must also grow. In decentralized approaches, new elements can be
added without changing any of the existing elements.

2. A frequent role of the central element is to mediate interactions among lower-level nodes
(as in the mediator architecture [23]). This technique may actually lengthen the
communication path between two nodes, leading to undesirable delays as messages travel
up, then back down, the hierarchy.

3. The central element and the communication paths leading to it are vulnerable to attack or
failure, making the system less robust than a swarming system.

Centralized architectures often result more from tradition than from absolute system
requirements, and a growing body of cases suggests that acceptable functionality can be
achieved, with improved scalability, timeliness, and robustness, in a decentralized way. In
addition, centralization is impossible in some cases (such as achieving coordination among a
population of entities whose members are not known in advance and who do not all have access

10/31/2003 12:12 PM Page 8

 Engineering Swarming Systems

to a common element). Swarming techniques are a natural candidate for implementing
decentralized architectures.

2.5 Dynamic
A system is dynamic if its requirements change during its lifetime. The emergent behavior that is
characteristic of swarming is a powerful way for dealing with changed requirements. The system
elements do not need to encode the system-level behavior explicitly, and so do not need to be
modified when those requirements change. Three aspects of such change affect the need for
emergence: scope, speed, and obscurity.

Scope characterizes the amount of change to which a system’s requirements are susceptible. The
less the scope of change, the more likely it is that the system as originally configured will deliver
acceptable performance. The greater the degree of change, the more value there is in the ability
of the elements to reorganize to produce new emergent behaviors that were not active in the
initial configuration.

Speed characterizes the rapidity of change, and affects the desirability of swarming by way of the
distinction between centralized and decentralized architectures. If the system changes slowly,
non-swarming techniques that rely on centralized organizations can tolerate the time delays
imposed by hierarchical communications. As the rate of change begins to outpace the
communications time through the hierarchy, centralized organizations find themselves
perpetually providing the answers to yesterday’s problems, and unable to respond rapidly
enough. A common response is to flatten the organization and empower lower-level nodes to act
on local information, essentially moving toward a swarming architecture.

Obscurity reflects the degree to which later requirements can be anticipated by the original
designer. Even if changes are rapid and wide in scope, if they follow along the lines anticipated
by the designer, simple parameter adjustments in a non-emergent architecture may be able to
cope with them. Swarming systems are much better at enabling a system to satisfy requirements
that would be surprising to its original designer.

3 WHY does Swarming work?
Swarming is a discovery, not an invention. It is a
naturally occurring phenomenon that we seek to
imitate in engineered systems. Design principles
for effective artificial swarming systems must be
developed from an understanding of why
swarming works in natural systems.

We analyze these underlying principles of
swarming in terms of three restrictions on the
space of all possible multi-process systems,
outlined in . Figure 6

Coupled Processes

Autocatalytic
Potential

Function

Coupled Processes

Autocatalytic
Potential

Function

Multiple
Processes

Figure 6: Three Enablers for
Swarming Systems

• The various processes must be coupled with
one another so that they can interact.

• This interaction must be self-sustaining, or
autocatalytic. Autocatalysis enables self-

10/31/2003 12:12 PM Page 9

 Engineering Swarming Systems

organization, but it is
not necessarily useful. Table 2: Categories of Information Exchange

 Topology of Inter-Agent Relationships

Centralized (between
Distinguished and
Subordinate agents)

Decentralized (among
Peer agents)

Direct
(messages
between
agents)

Construction (Build-
Time)
Command (Run-time)

Conversation

In
fo

rm
at

io
n

Fl
ow

Indirect
(non-
message
interaction)

Constraint
Stigmergy (generic)
Competition (limited
resources)

• The self-organizing
system must produce
functions that are useful
to the system’s
stakeholders.

In discussing each of these,
we first review the concept
and its mechanisms, then
discuss design principles to
which it leads.

3.1 Coupled Processes

3.1.1 How Processes can be Coupled
Agents must exchange information if they are to self-organize. Different patterns of information
exchange are possible, and can be classified along two dimensions: Topology and Information
Flow (Table 2).

The Topology dimension depends on two different kinds of relations that agents can have with
one another. When the agents can say “No” to one another within the rules of the system, they
are “peer agents.” When one of them (say agent A) can say “No” to the other (B), but B cannot
say “No” to A, we call A the “distinguished agent” and B the “subordinate.” The relationship
between two agents may be fairly fixed (for example, the relationship between a human
programmer and her software agent). Or it may vary over time (as when peer agents negotiate a
work plan that calls for one of them to supervise the other, resulting in a distinguished-
subordinate relationship during execution). These concepts can be developed more formally
through dependency and autonomy theory [15, 37]. Centralized information exchange is between
a distinguished and a subordinate agent, while decentralized information exchange is between
peer agents.

The Information Flow dimension relies on environmental state variables that the agents can
manipulate and sense. All information exchange is ultimately mediated by the environment, but
the role of the environment is sometimes not modeled explicitly. The information flow from one
agent to another is Direct if no intermediate manipulation of information is modeled, and Indirect
if it is explicitly modeled.

Centralized mechanisms all involve communication between the distinguished agent and its
subordinates. This flow may be direct (when the distinguished agent constructs or commands the
subordinates) or indirect (when the distinguished agent constrains the subordinates by
manipulating exogenous environmental variables visible to the subordinates). In correlation
through command, used commonly in robot soccer, holonic manufacturing, and some simulation
applications, agents behave much like objects, executing methods invoked by incoming
messages. The focal point algorithm advocated by [22] and the common utility functions implicit
in [24] both rely on construction (common programming). In indirect centralized mechanisms,
subordinates jointly sense changes in a shared exogenous environmental variable. The variable’s

10/31/2003 12:12 PM Page 10

 Engineering Swarming Systems

dynamics are independent of agent actions, so it cannot move information between subordinates.
But it may serve as a synchronizing signal that correlates the agents’ actions. The experimenter
who configures targets and obstacles in an experimental testbed is constraining the subordinates,
supporting correlation through indirect centralized action.

Decentralized mechanisms all involve communication among peers. Most negotiation research
focuses on direct peer-to-peer information flows (“conversation”). Indirect decentralized flows
occur when peers make and sense changes to environmental variables. This class of coordination
is called “stigmergy,” [25], from the Greek words stigma “sign” and ergon “work”: the work
performed by agents in the environment guides their later actions. The information stored in the
environment forms a field that supports agent coordination, leading to the term “co[ordination]-
field” for this class of technique [33]. Such techniques are common in biological distributed
decentralized systems such as insect colonies [38]. A common form of stigmergy is resource
competition, which occurs when agents seek access to limited resources. For example, if one
agent consumes part of a shared resource, other agents accessing that resource will observe its
reduced availability, and may modify their behavior accordingly. Even less directly, if one agent
increases its use of resource A, thereby increasing its maintenance requirements, the loading on
maintenance resource B may increase, decreasing its availability to other agents who would like
to access B directly. In the latter case, environmental processes contribute to the dynamics of the
state variables involved.

Different varieties of stigmergy can be distinguished. One distinction concerns whether the signs
consist of special markers that agents deposit in the environment (“marker-based stigmergy”) or
whether agents base their actions on the current state of the solution (“sematectonic stigmergy”).
Another distinction focuses on whether the environmental signals are a single scalar quantity,
analogous to a potential field (“quantitative stigmergy”) or whether they form a set of discrete
options (“qualitative stigmergy”). As shown in Table 3, the two distinctions are orthogonal.

Stigmergic mechanisms have a number of attractive features, particularly for swarming systems.

Simplicity.—The logic for individual agents is much simpler than for an individually intelligent
agent. This simplicity has three collateral benefits.

1. The agents are easier to program and prove correct at the level of individual behavior.

2. They can run on extremely small platforms (such as microchip-based “smart dust” [43]).

3. They can be trained with genetic
algorithms or particle-swarm
methods rather than requiring
detailed knowledge engineering.

Table 3: Varieties of Stigmergy

 Marker-Based
(Artificial signs
inserted in the

domain)

Sematectonic
(Domain elements

only)

Quantitative
(Scalar
quantities)

Gradient following
in a single
pheromone field

Ant cemetery
clustering

Qualitative
(Symbolic
distinctions))

Decisions based
on combinations
of pheromones

Wasp nest
construction

Scalable.—Stigmergic mechanisms
scale well to large numbers of entities.
In fact, unlike many intelligent agent
approaches, stigmergy requires multiple
entities to function, and performance
typically improves as the number of
entities increases. Stigmergy facilitates
scalability because the environment
imposes locality on agent interactions.

10/31/2003 12:12 PM Page 11

 Engineering Swarming Systems

Agents interact with the environment only in their immediate vicinity. Increases in the number of
agents are typically associated with an extension of the environment. The density of agents over
the environment, and thus the processing load on each agent, usually does not increase.

Robustness.—Because stigmergic deployments favor large numbers of entities that are
continuously organizing themselves, the system’s performance is robust against the loss of a few
individuals. Such losses can be tolerated economically because each individual is simple and
inexpensive.

Environmental Integration.—Explicit use of the environment in agent interactions means that
environmental dynamics are directly integrated into the system’s control, and in fact can enhance
system performance. A system’s level of organization is inversely related to its symmetry
(Figure 2), and a critical function in achieving self-organization in any system made up of large
numbers of similar elements is breaking the natural symmetries among them [3]. Environmental
noise is usually a threat to conventional control strategies, but stigmergic systems exploit it as a
natural way to break symmetries among the entities and enable them to self-organize.

We make extensive use of stigmergy in our applications, building on the theoretical foundation
and pheromone infrastructure outlined in [11].

3.1.2 Design Principles Derived from Coupled Processes
Coupling 1: Use a distributed environment.—Stigmergy is most beneficial when agents can
be localized in the environment with which they interact by sensing and acting. A distributed
environment enhances this localization, permitting individual agents to be simpler (because their
attention span can be more local) and enhancing scalability.

Coupling 2: Use an active environment.—If the environment supports its own processes, it can
contribute to overall system operation. For example, evaporation of pheromones in the ants’
environment is a primitive form of truth maintenance, removing obsolete information without
requiring attention by the agents who use that information.

Coupling 3: Keep agents small.—Agents should be small in comparison with the overall
system, to support locality of interaction. This criterion is not sufficient to guarantee locality of
interaction, but it is a necessary condition. The fewer agents there are, the more functionality
each of them has to provide, and the more of the problem space it has to cover.

Coupling 4: Map agents to Entities, not Functions.—Choosing to represent domain entities
rather than functions as agents takes advantage of the fact that in our universe, entities are
bounded in space and thus have intrinsic locality. Functions tend to be defined globally, and
making an agent responsible for a function is likely to lead to many non-local interactions. For
example, in a factory, each machine (an entity) has fairly local interactions with other machines,
parts, and workers in its area of the plant, but a function (such as scheduling) must take into
account all of the machines in the entire plant.

3.2 Autocatalytic Potential

3.2.1 What is Autocatalysis?
The concept of autocatalysis comes from chemistry. A catalyst is a substance that facilitates a
chemical reaction without being permanently changed. In autocatalysis, a product of a reaction

10/31/2003 12:12 PM Page 12

 Engineering Swarming Systems

serves as a catalyst for that same reaction. An
autocatalytic set is a set of reactions that are not
individually autocatalytic, but whose products
catalyze one another. The result is that the
behaviors of the reactions in the set are
correlated with one another. If reaction A speeds
up (say, due to an increased supply of its
reagents), so does any reaction catalyzed by the
products of A. If A slows down, so do its
autocatalytic partners. This correlation causes a
decrease in the entropy of the overall set, as
measured over the reaction rates, so we would
describe such a system as self-organizing.

 summarizes these concepts using
reaction schemata.
Figure 7

D
A + B CA + B C

C
A + B C

ba
c

d

Z C W
A + B C D + E F … X + Y Z

D
A + B CA + B C

C
A + B C

C
A + B C

C
A + B C

ba
c

d

Z C W
A + B C D + E F … X + Y Z

Figure 7: Relations among Processes.--a) A
simple reaction. b) D catalyzes the
conversion of A and B to C. c) An
autocatalytic reaction. d) An autocatalytic set
of processes (shown as a ring, but other
topologies are possible). Not all processes that are coupled, are

autocatalytic. Autocatalyticity requires a
continuous closed flow of information among the processes to keep the system moving. If the
product of process A catalyzes process B, but process B’s products have no effect (either directly
or indirectly) on process A, the system is not autocatalytic. Furthermore, a system might be
autocatalytic in some regions of its state space but not in others.

It is natural to extend this concept from chemistry to any system of interacting processes, such as
a multi-agent system. A set of agents has autocatalytic potential if in some regions of their joint
state space, their interaction causes system entropy to decrease (and thus leads to increased
organization). In that region of state space, they are autocatalytic.

Figure 8

Micro
Newtonian;
Force Field;
Entropy

Dissipation
(Entropy ↑)

Dissipation
(Entropy ↑)

Micro
Newtonian;
Force Field;
Entropy

Dissipation
(Entropy ↑)

Dissipation
(Entropy ↑)

Macro
Non-Newtonian
Flow Field
Negentropy

Pe
rc

ep
tio

n

Perception

Macro
Non-Newtonian
Flow Field
Negentropy

Pe
rc

ep
tio

n

Perception

"Currency"

Rational Action

(Entropy ↓) Ra
tio

na
l A

ct
io

n

(E
nt

ro
py

 ↓
)

Ant
Dynamics

"Currency"

Rational Action

(Entropy ↓) Ra
tio

na
l A

ct
io

n

(E
nt

ro
py

 ↓
)

Ant
Dynamics

Ant
Dynamics

Perception
Rational Action

Agent 1 Agent 2

Traditional Agent
Dynamics

Traditional Agent
Dynamics

Key

Figure 8: Autocatalytic Flows in Pheromone Dynamics

 exhibits two different approaches to achieving the closed information flow that supports
autocatalysis in multi-agent systems.

• The dashed line
between the two
agents represents
conventional
agent
interactions: the
agents perceive
one another,
reason about how
to coordinate
their activities,
and then act. The
information flow
in this case is
maintained by
the agents’
perception of one
another. As the

10/31/2003 12:12 PM Page 13

 Engineering Swarming Systems

number of agents increases, this approach requires an increasing amount of processing
power on the part of each agent. If an agent is unable to sense or be sensed by other agents
in the system, the information flow is broken, and the system’s ability to self-organize will
be reduced.

• The stigmergic approach used in swarming is represented by the solid lines forming a
triangle of “Rational Action,” “Dissipation,” and “Perception.” Agents deposit a
“currency” (pheromone in the case of ants; money in the case of a market) into a shared
environment. The aggregation of this currency from multiple deposits, and dissipative
forces in the environment (evaporation in the case of pheromones), generate gradients that
each agent can sense and to which it can respond. This continuous cycle provides the
information flow that keeps the processes coordinated. Because the environment
integrates the information from each agent, and because agents need sense only their local
environment, the number of agents can increase without requiring more processing power
on the part of each agent.

Two points are important to understand about autocatalyticity.

1. In spite of the reduction of entropy, autocatalyticity does not violate the Second Law of
Thermodynamics. The rationalization is most clearly understood in the stigmergic case
(Figure 8). Entropy reduction occurs at the macro level (the individual agents), but the
dissipation of pheromone at the micro level generates more than enough entropy to
compensate. This entropy balance can actually be measured experimentally [39].

2. Information flows are necessary to support self-organization, but they are not sufficient.
A set of coupled processes may have a very large space of potential operating parameters,
and may achieve autocatalyticity only in a small region of this space. Nevertheless, if a
system does not have closed information flows, it will not be able to maintain self-
organization.

3.2.2 Design Principles Derived from Autocatalysis
Autocatalysis 1: Think Flows rather than Transitions.—Our training as computer scientists
leads us to conceive of processes in terms of discrete state transitions, but the role of
autocatalysis in supporting self-organization urges us to pay attention to the flows of information
among them, and to ensure that these flows include closed loops.

Autocatalysis 2: Boost and Bound.—Keeping flows moving requires some mechanism for
reinforcing overall system activity. Keeping flows from exploding requires some mechanism for
restricting them. These mechanisms may be traditional positive and negative feedback loops, in
which activity at one epoch facilitates or restrains activity at a successive one. Or they may be
less adaptive mechanisms such as mechanisms for continually generating new agents and for
terminating those that have run for a specified period (“programmed agent death”).

Autocatalysis 3: Diversify agents to keep flows going.—Just as heat will not flow between two
bodies of equal temperature, and water will not flow between two areas of equal elevation,
information will not flow between two identical agents. They can send messages back and forth,
but these messages carry no information that is new to the receiving agent, and so cannot change
its state or its subsequent behavior. Maintaining autocatalytic flows requires diversity among the
agent population. This diversity can be achieved in several ways. Each agent’s location in the

10/31/2003 12:12 PM Page 14

 Engineering Swarming Systems

environment may be enough to distinguish it from other agents and support flows, but if agents
have the same movement rules and are launched at a single point, they will not spread out. If
agents have different experiences, learning may enable them to diversify, but again, reuse of
underlying code will often lead to stereotyped behavior. In general, we find it useful to
incorporate a stochastic element in agent decision-making. In this way, the decisions and
behaviors of agents with identical code will diversify over time, breaking the symmetry among
them and enabling information flows that can sustain self-organization.

3.3 Function

3.3.1 How Systems Adjust to Required Function
Process interaction must support autocatalysis if a system is to support ongoing self-
organization. From an engineering perspective, a further step is necessary. Self-organization in
itself is not necessarily useful. Autocatalysis might sustain undesirable oscillations or thrashing
in a system, or keep it locked in some pathological behavior. We want to construct systems that
not only organize themselves, but that yield structures that solve some problem we need to
address. There are two broad approaches to this problem, broadly corresponding to the
distinction in classical AI between the scruffy and the neat approaches. It is likely that as the use
of self-organizing systems matures, a hybrid of both approaches will prove necessary.

One approach, exemplified by work in amorphous computing [1, 34], is to build up, by trial and
error, a set of programming metaphors and techniques that can then be used as building blocks to
assemble useful systems.

An alternative approach is to seek an algorithm that, given a high-level specification for a
system, can compute the local behaviors needed to generate this global behavior. State-of-the-art
algorithms of this sort are based not on design, but on selection. Selection in turn requires a
system with a wide range of behavioral potential, and a way to exert pressure to select from this
wide range of behaviors the ones that are actually desired.

One way to ensure a broad range of behavioral potential is to construct nonlinear systems that
can exhibit formally chaotic behavior. From a classical engineering perspective, chaos is
undesirable because it is unpredictable in the long range. However, from an emergent
perspective, chaos is desirable because it offers a simple way to sample a broad subset of the
system’s space of possible behaviors.

Figure 9: Behavioral Diversity in the
Logistic Function

We can illustrate this somewhat nonintuitive
insight with the simple logistic equation

xt+1 = g xt (1 – xt)

for 0 ≤ x ≤ 1 and 1 ≤ g ≤ 4. Figure 9 shows a plot
of the 201st through 500th iterates of this function,
starting at x = 0.5, for various values of g. The
plot has three distinct regions.

• For g < 3, x converges to a single value,
which depends on g. In this region, the
system has only a single behavior for each
value of g. If x is perturbed away from this

10/31/2003 12:12 PM Page 15

 Engineering Swarming Systems

value, it will quickly return. The system has no behavioral diversity.

• For 3 ≤ g < 3.569945672…, x oscillates among a number of discrete alternatives. The
Figure clearly shows regions with two, then four alternatives. In fact, as g approaches the
upper limit of this range, the number of alternatives doubles repeatedly, so that a value of
g can be found to yield any number of alternatives that is an integer power of two.

• For 3.569945672… ≤ g, the system is formally chaotic. In this region, x varies widely
over its range, and (left to its own behavior) never repeats its position exactly. This region
offers the broadest behavioral potential for x.

The behavioral diversity evident in the chaotic regime is useful only if some way can be found to
lock the system down to a particular behavior, but the basic mechanisms for such control have
been known for over a decade [36]. The basic idea is to let the chaotic dynamics explore the state
space, and when the system reaches a desirable region, to apply a small control force to keep the
system there.

It may seem that chaos is a complicated way to generate potential behaviors, and that it would be
simpler to use a random number generator. In fact, virtually all such generators are in fact
nonlinear systems executing in their chaotic regime.

In a multi-agent system, the key to applying this generate-and-test insight is finding a way to
exert selective pressure to keep the system balanced at the desired location. Natural systems have
inspired two broad classes of algorithm for this purpose: synthetic evolution, and particle swarm
optimization.

Synthetic evolution is modeled on biological evolution. Many different algorithms have been
developed [31], but they share the idea of a population of potential solutions that varies over
time, with fitter solutions persisting and less fit ones being discarded. The variational
mechanisms (which usually include random mutation) explore the system’s potential behaviors,
while the death of less fit solutions and the perpetuation of more fit ones is the control pressure
that selects the desired behavior.

Particle swarm optimization [32] is inspired by the flocking behavior of birds. In adaptations of
this behavior to computation, solutions do not undergo birth and death (as in evolutionary
mechanisms). Instead, they are distributed in some space (which may be the problem space, or an
arbitrary structure), and share with their nearest neighbors the best solutions they have found so
far. Each solution entity then adjusts its own behavior to take into account a blend of its own
experience and that of its neighbors.

Market-based bidding mechanisms may be considered a variation on particle swarm
optimization. The similarity lies in selection via behavioral modification through the exchange of
information rather than changes in the composition of the population. The approaches differ in
the use that is made of the shared information. In the particle swarm, agents imitate one another
based on the information they receive, while in bidding schemes, they use this information in
more complicated computations to determine their behavior.

10/31/2003 12:12 PM Page 16

 Engineering Swarming Systems

3.3.2 Design Principles Derived from Functional Adjustment
Function 1: Generate behavioral diversity.—Structure agents to ensure that their collective
behavior will explore the behavioral space as widely as possible. One formula for this objective
has three parts.

1. Let each agent support multiple functions.

2. Let each function require multiple agents.

3. Break the symmetry among the agents with random or chaotic mechanisms.

The first two points ensure that system functionality emerges from agent interactions, and that
any given functionality can be composed in multiple ways. The third ensures a diversity of
outcomes, depending on which agents join together to provide a given function at a particular
time.

Function 2: Give agents access to a fitness measure.—Agents need to make local decisions
that foster global goals, an insight that is supported by formal analysis in Wolpert’s Collective
Intelligence (COIN) research [47]. A major challenge is finding measures that can be evaluated
by agents on the basis of local information, but that will correlate with overall system state.
Determining such measures is a matter for experimentation, although thermodynamic concepts
relating short-range interactions to long-term correlations have the potential to yield a theoretical
foundation. In one application, we have found the entropy computed over the set of behavioral
options open to an agent to be a useful measure of the degree of overall system convergence [12]
that agents can use to make intelligent decisions about bidding in resource allocation problems.

Function 3: Provide a mechanism for selecting among alternative behaviors.—If an
adequate local fitness metric can be found, it may suffice to guide the behavior of individual
agents. Otherwise, agents should compare their behavior with one another, either to vary the
composition of the overall population (as in synthetic evolution) or to enable individual agents to
vary their behavior (as in particle swarm optimization).

4 HOW can we apply these principles in engineered systems?
To illustrate the use of these principles, we briefly review several systems, described in more
detail in other publications, that produce high-level cognitive behavior from swarming. In each
case we review the problem being solved, summarize the behavior of the local elements, and
discuss how they reflect the ten design principles outlined in Section 3.

4.1 Pattern Recognition in a Sensor Network [13]

4.1.1 The Problem
Driven by the need for greater efficiency and agility in business and public transactions, more
and more data is becoming digitally available in real time on computer networks. These
heterogeneous data streams reflect many aspects of the behavior of groups of individuals in a
population (e.g., traffic flow, shopping and leisure activities, healthcare needs). A new
generation of active surveillance systems that integrate a large number of spatially distributed
heterogeneous data streams may be used in various applications, for instance, to protect a civilian

10/31/2003 12:12 PM Page 17

 Engineering Swarming Systems

population from bioterrorist attacks, to support real-time traffic coordination systems, to trace
collaboration structures in terrorist networks, or to manage public healthcare efficiently.

Active surveillance of population-level activities includes the detection and classification of
spatio-temporal patterns across a large number of real-time data streams. Approaches that
analyze data in a central computing facility tend to be overwhelmed with the amount of data that
needs to be transferred and processed in a timely fashion. Also, centralized processing raises
proprietary and privacy concerns that may make many data sources inaccessible. Our
architecture avoids these problems through decentralization. Instead of transferring the data to a
centralized processing facility, we transfer the processes (fine-grained agents) to the data
sources. This architecture addresses both of these concerns. Access restrictions may be
guaranteed through proven local processes. Bandwidth is reduced because long-distance
communication of data is needed only when the network detects a pattern and needs to invoke a
higher authority for action. (Ultimately, one would like the response itself to be a distributed
emergent response, but political realities suggest that in the immediate future self-organizing
recognition systems will be much more acceptable than self-organizing systems that take action
on people and property.)

4.1.2 Summary of Architecture
We consider a distributed swarming agent architecture the most appropriate answer to the
challenge of detecting spatio-temporal patterns in a network of heterogeneous sources of
potentially proprietary real-time data. Instead of attempting to stream a tremendous amount of
data into a central processing facility, we integrate the external sources into a network for mobile
agent computing. Essentially, this network of agent processing nodes is a massively parallel
computer for pattern detection and classification with a unique way of self-organizing the
processing tasks.

Into our network of processing nodes we deploy large populations of simple mobile agents that
coordinate their activities using stigmergy. Each node generates agents at a constant rate, and
agents die after a fixed lifetime, thus ensuring coverage of the entire area under surveillance.
Using artificial pheromones, the agents dynamically organize themselves around patterns
observed in the data streams. The emergence of
globally coordinated behavior through
stigmergic interactions among many fine-
grained software agents in a shared
computational environment is facilitated by a
component of the distributed runtime
environment that emulates actual pheromone
dynamics (aggregation, evaporation, dispersion)
in the physical world. Our heterogeneous agent
system continuously executes two parallel
processes: pattern detection and pattern
classification. More populations of agents could
be deployed at any time, for instance to
introduce additional criteria in the detection
process, or to add more classification schemes.

Input IndicatorsInput Indicators

Pattern Pheromones
Select Patterns

Pattern Pheromones
Select Patterns

Search Pheromones
Concentrate Detectors
Search Pheromones

Concentrate Detectors

Find Pheromones
Localize Behaviors
Find Pheromones

Localize Behaviors

Figure 10: Stigmergic Pattern Detection
and Classification The agents executing the detection process

10/31/2003 12:12 PM Page 18

 Engineering Swarming Systems

(“Detectors”) continuously process the input data and search for spatio-temporal structures, using
two sets of flavors of pheromones. Detectors use Search pheromones to mark suspicious areas of
the network and attract other detectors to confirm their discovery. A second set of Find
pheromones, which require more deposits to stabilize, is used to record this confirmation,
informing a local node that it is likely to be an instance of the pattern in question and enabling it
to take appropriate action. Detectors search for unusually high differences in the data streams of
neighboring locations in the network.

“Classifier” agents are responsible for the classification of the detected patterns according to a
particular classification scheme. The pattern classification scheme used in our demonstration
correlates the detected patterns with a particular, dynamically changing geographic direction
(wind, modeling the dispersion of a bioterrorist weapon). The Classifiers move in a way that
models the pattern being sought, and deposit a Pattern pheromone when they encounter a pattern
that matches their behavior.

Figure 10 shows the performance of the algorithm. The upper-left display is a grid in which each
cell is set either to a random mixture of Red-Green-Blue, or to white. Viewing the overall
display, we can see that the white cells are different from the mass of the other cells, and that
they are arranged in extended patterns. However, a single cell with only local knowledge of its
neighborhood can know neither of these facts. The upper-right display shows the Search
pheromones deposited by Detectors searching for unusual cells, based on their recent experience.
The high propagation of these pheromones creates gradients that attract other Detectors for
confirmation. As more and more Detectors agree that the cells are indeed unusual, Find
pheromone (lower right) accumulates to mark the location of the unusual cells. Finally,
“Classifier” agents moving diagonally across the field sense repeated Find pheromones aligned
with their movement and mark them with Pattern pheromone to indicate an instance of a
particular structure of interest.

4.1.3 Principles
Coupling 1: Use a distributed environment.—The network of data collection nodes is
distributed over space. For spatio-temporal pattern recognition, each data collection node
maintains a temporal data structure to distribute agent interactions in time as well.

Coupling 2: Use an active environment.—The environment implements the basic pheromone
dynamics of Aggregation (fusion of observations from multiple agents), Propagation
(communication), and Evaporation (truth maintenance).

Coupling 3: Keep agents small.—Both data nodes and mobile agents are small compared with
the overall system, and all interactions are local. No single agent can solve the problem. No data
node can know on its own that it is part of a pattern being sought, nor can any individual
Detector or Classifier confirm the detection or classification without collaboration by its
colleagues.

Coupling 4: Map agents to Entities, not Functions.—The data nodes correspond to distributed
data sources in the physical domain. The Detectors and Classifiers are not domain entities, but
neither does any one of them implement a function by itself. Detection and Classification emerge
from the interactions of multiple Detectors and Classifiers. It is perhaps best to think of the
Detectors and Classifiers as instances of hypotheses about structures in the environment,
hypotheses that are confirmed or discredited through the stigmergic interactions.

10/31/2003 12:12 PM Page 19

 Engineering Swarming Systems

Autocatalysis 1: Think Flows rather than Transitions.—The fundamental information flow in
this application is the pheromone loop illustrated in Figure 8.

Autocatalysis 2: Boost and Bound.—Search pheromone builds up through positive feedback:
the more is deposited, the more Detectors come to that area and the more they deposit Search
pheromone. If unrestrained, this reinforcement could lead to all Detectors becoming concentrated
in one area, leaving other regions unexplored. Bounds on system dynamics are provided by the
programmed death of agents and their continual rebirth at nodes distributed throughout the area.

Autocatalysis 3: Diversify agents to keep flows going.—This architecture has three main
species of agents among which information flows: data nodes, Detectors, and Classifiers.

Function 1: Generate behavioral diversity.—Each function (detection and classification
requires multiple agents. It is less clear in this case that each agent performs multiple functions.
However, agents do differ from one another.

• The birth location of each Detector or Classifier varies across the search area.

• A key behavioral parameter of mobile agents in this application is a threshold that
indicates how distinct a data node must be from others that the agent has seen recently
before it will deposit a pheromone. This threshold is randomly generated.

• Agents’ movements, while influenced by local pheromone gradients, always incorporate a
stochastic component. The pheromone strength in nearby nodes is used to weight a
roulette wheel that determines the probability that the agent will move to each of those
nodes in the next step.

Function 2: Give agents access to a fitness measure.—The pheromone fields accumulate
information about outlying nodes and extended patterns that combine the observations of many
mobile agents that have followed different individual trajectories. Thus they are locally
accessible repositories of information gathered over a much broader area, providing a local view
of the global state of the problem.

Function 3: Provide a mechanism for selecting among alternative behaviors.—Mobile
agents adjust their detection thresholds using a variation of particle swarm optimization.

4.2 Searching and Imaging with Unmanned Air Vehicles [40]

4.2.1 The Problem
Some sensing problems (e.g., three-dimensional imaging with synthetic aperture radar) requires
the coordination of multiple sensing platforms. Consider a swarm of unpiloted air vehicles
(UAV’s) whose task is to locate and image potential targets hiding under dense foliage. The
swarm must achieve three objectives that require different behaviors on the part of individual
UAV’s.

In searching, each UAV must effectively cover a large search space and revisit locations
regularly, maximizing detection probability based on known characteristics of the target (e.g.,
visibility angle), while not exhibiting any obvious systematic search patterns that would permit
mobile targets to execute simple avoidance strategies. A single sensor can generate enough
information to suggest the presence of a target, though it cannot image the target by itself.

10/31/2003 12:12 PM Page 20

 Engineering Swarming Systems

When a vehicle detects a target, it announces the location of
the target, and vehicles that receive this announcement begin
a coordinated imaging task. In this phase, each vehicle must
collect data from varying angles along linear trajectories
(box) while minimizing both the effort (the number of
required vehicles and the distance they must move) and the
data collection time (by collecting data in parallel).

Figure 11: Visitation
Pheromone Map of one UAV in
the Swarm

In addition, individual vehicles require periodic refueling or
other maintenance, and the swarm must ensure that
individual vehicle requirements are met without
compromising the ability of the overall swarm to continue
functioning.

4.2.2 Summary of Architecture
Our stigmergic approach to this problem uses digital pheromones. An important contrast with the
pheromone mechanisms in our other two example applications is that while those applications
envisioned a network of physical nodes maintaining the pheromone field externally to the agents,
in this case each agent maintains an internal pheromone map that tiles the search space into
discrete cells. Each cell is a place in a pheromone infrastructure, which means that the agent that
controls the vehicle may deposit and sense digital pheromones of different flavors in that cell. In
principle, agents could propagate these maps to one another through local interaction, thus
achieving a stigmergic analog to the DAI technique of partial global planning [19], but even
without generating such a “global distributed view,” the local iconic representation has
significant benefits over more conventional robotic techniques such as occupancy maps.

During search, when a vehicle passes through the area in the search space that is assigned to a
particular cell, it deposits a unit of the visitation pheromone into that cell in its internal map. In
addition, the agent broadcasts its location, and the agents of any other vehicle within
communications reach then deposit a visitation pheromone into their maps too. Thus, the agents
mark cells that some member of the swarm has already visited. Figure 11 shows a snapshot of
the visitation pheromone map of one agent in the swarm.

Local concentrations of pheromones lose strength over time, which enables the swarm to
“forget” visitations to locations that occurred a long time ago. This knowledge management
process ensures that the search process keeps revisiting locations in case targets have moved in.

The individual agent decides its vehicle’s trajectory based on its internal map of visitation
pheromones. Once it has reached its previous goal, the agent probabilistically selects a new
location. The probability of the selection of a particular location is inversely proportional to its
distance to the vehicle’s current location and to the strength of the visitation pheromone
concentration in the cell that covers this location. Thus the agents tend to prefer nearby locations
that have not been visited recently, and collectively explore the whole search space.

An agent that detects a potential target dynamically forms an imaging team. Team formation is a
collaborative process in which agents bid for a role in the team depending on the match of the
vehicles’ imaging capabilities with the role’s requirements (hard constraint) as well as the
current distance of the eligible vehicles to the detected target (soft constraint).

10/31/2003 12:12 PM Page 21

 Engineering Swarming Systems

Once roles are assigned, the team members plot the optimal trajectories for their respective data
acquisition flight and execute the imaging task. Depending on the imaging modality (coherent
vs. non-coherent), the data acquisition may be executed individualistically or synchronized
across the team. Once the task is completed, the team disbands and the agents resume their
search behavior.

A team-based approach to maintenance can accommodate UAV’s with different fuel
consumption rates, as well as variations in the availability of maintenance resources at the base.
UAV’s deposit a pheromone flavor that communicates the intensity of their current desire for
maintenance, while the base propagates a pheromone indicating its current level of load. A
UAV’s decision to shift into the maintenance role is promoted by its own desire for refuel and
inhibited by the level of refueling pheromone it senses from neighboring UAV’s and the load
pheromone propagated from the base.

Figure 12

Refuel/Maintenance Station

Target

Verification
Team

Refueling

Refuel/Maintenance Station

Target

Verification
Team

Refueling

Figure 12: Stigmergic Role Differentiation

 shows a screen shot of this system. Most of the UAV’s are scanning the area in search
mode, but four have formed a verification team to image a suspected target, while one is one its
way back to the refuel station.

4.2.3 Principles
Coupling 1: Use a distributed environment.—The pheromone environment maintained by
each UAV is not distributed, but locality of interaction among UAV’s is enforced by their
geographical dispersion over the search area.

Coupling 2: Use an active environment.—The pheromone environment implements the usual
pheromone dynamics of aggregation, propagation, and evaporation. In addition, each UAV’s
physical environment includes the other UAV’s, whose behaviors change based on their
individual experiences.

Coupling 3: Keep agents small.—No single UAV can do the entire task. At least four are
needed to image a target, and even more are
required to maintain a high level of search.

Coupling 4: Map agents to Entities, not
Functions.—The agents in this system
correspond to physical UAV’s.

Autocatalysis 1: Think Flows rather than
Transitions.—The main information flows in
this system are the pheromone flows of

, and the communications flows between a
UAV that has detected a target and the other
UAV’s whom it seeks to recruit to perform
imaging.

Figure
8

Autocatalysis 2: Boost and Bound.—A
UAV’s attraction to an imaging team is based
on positive feedback, while the visitation map
approach to dispersing the UAV’s is an
example of negative feedback.

10/31/2003 12:12 PM Page 22

 Engineering Swarming Systems

Autocatalysis 3: Diversify agents to keep flows going.—UAV’s are diverse in their location. In
addition, each UAV decision (the angle at which to traverse the search area in search mode,
whether to join an imaging team, whether to return for refueling) is stochastically weighted.

Function 1: Generate behavioral diversity.—Each function requires multiple agents, and each
agent supports all three functions. Symmetry among agents is broken by making decisions with
weighted stochastic functions.

Function 2: Give agents access to a fitness measure.—Several fitness functions influence
agent behavior. A UAV’s proximity to another that has sensed a target, and its sensory
configuration, influence whether it joins an imaging team. Its current fuel level and the load level
of the base influence whether it enters maintenance mode.

Function 3: Provide a mechanism for selecting among alternative behaviors.—Agents
decide whether to image based on a collective sharing of information in a bidding process.
Agents decide whether to enter maintenance mode based on their own fuel level and the load at
the base.

4.3 Dynamic Target Selection and Path Planning [41, 42]

4.3.1 The Problem
The current generation of UAV’s reduces the threat to human operators, but leaves several
problems unresolved.

• It does not decrease the manpower requirements. Each aircraft requires a flight crew of
one to three people, so deploying large numbers of UAV’s requires committing and
coordinating many human warfighters.

• The high-bandwidth needed for linking the flight crew to the aircraft places severe
constraints on available communications resources.

• Fusion of information from multiple sources (satellite imagery, sensors on UAV’s,
unattended ground sensors, information from special forces in the field) is a continuing
challenge.

We want a UAV to be able to manage the details of its own mission, avoiding dynamic threats as
soon as they arise and planning its path to optimize its movement through the battlespace.

4.3.2 Summary of Architecture
Like our other two examples, this application uses digital pheromones. These pheromones live in
a network of place agents, which represent regions of the battlespace. All place agents can run
on a single computer for simulation purposes, but in actual deployment each place agent might
run on an enhanced unattended ground sensor (UGS) placed in the battlespace by air drops or
artillery and responsible for any location to which it is closer than any other UGS. We refer to
such an enhanced UGS as a HOST (Hostility Observation and Sensing Terminal). Each place
agent is a neighbor to a limited set of other place agents, those that are responsible for adjacent
regions of space, and it exchanges local information with them. In addition to place agents, the
system includes walker agents, representing physical resources such as UAV’s. Walker agents
move through the battlespace by interacting with the place agent for each region that they visit.

10/31/2003 12:12 PM Page 23

 Engineering Swarming Systems

Place agents and walker agents are software entities, while HOST’s and UAV’s are the hardware
in which they run.

Threat Pheromones Target Pheromones Path PheromonesThreat Pheromones Target Pheromones Path Pheromones

Figure 13: Pheromone Flavors in Emergent Path Planning

Each place agent maintains a scalar variable corresponding to each pheromone flavor. It
augments this variable when it receives additional pheromones of the same flavor (whether by
deposit from a walker agent, from its own sensors, or by propagation from a neighboring place
agent). It also evaporates the variable over time, and propagates pheromones of the same flavor
to neighboring place agents based on the current strength of the pheromone. Different flavors
may indicate the presence of a threat that should be avoided in the place’s region or the presence
of a target that should attract UAV’s.

The development of a path by a natural ant colony depends on the stochastic interaction of many
ants, some of whom wander off and die. Current UAV’s such as the Predator and the Global
Hawk are far too expensive to use in a stochastic search mode. Instead, each UAV’s walker
agent periodically emits ghost agents, software agents without a corresponding hardware
resource. These ghost agents are attracted by target pheromone and repelled by threat
pheromones, and lay down a path pheromone to store the results of their explorations.
Reinforcement of this path pheromone by multiple ghosts leads to the emergence of a path that
the UAV then follows. (Recent advances in inexpensive micro-UAV’s opens up the potential for
having the UAV’s themselves swarm, as in the example discussed in Section 4.2.)

Figure 13 illustrates the functions of the different pheromones in this process. On the left,
intelligence about threats is translated into threat pheromones that propagate only a short
distance, since their purpose is not to attract distant ghosts, but to prevent nearby ones from
wandering into danger. In the center, intelligence about targets results in target pheromones that
propagate widely, attracting ghost agents. The higher-priority target (to the west) emits
pheromone at a higher rate, thus generating a broader field. The right-hand display shows the
path pheromones deposited by the ghost. A UAV following the ridge of this field will be
attracted to the appropriate target, while avoiding intervening threats.

4.3.3 Principles
Coupling 1: Use a distributed environment.—The network of HOST’s provides an
environment that is physically distributed throughout the battlespace.

10/31/2003 12:12 PM Page 24

 Engineering Swarming Systems

Coupling 2: Use an active environment.—The HOST’s implement the pheromone dynamics of
aggregation, propagation, and evaporation.

Coupling 3: Keep agents small.—Intelligence about the battlespace is not concentrated in a
single machine, but maintained across many HOST’s, each responsible for a small region. The
path planning is done by ghost agents, which are small compared with the UAV’s walkers. (In
our experiments, each walker has about 300 concurrent ghosts.)

Coupling 4: Map agents to Entities, not Functions.—Agents correspond to physical regions
and resources.

Autocatalysis 1: Think Flows rather than Transitions.—The basic flow is the pheromone
cycle of Figure 8.

Autocatalysis 2: Boost and Bound.—Path emergence among the ghosts is the result of positive
feedback as they respond to path pheromones already in place, combined with the bounding
influence of pheromone evaporation over time. The ghost population is maintained by
continuous birth and programmed death.

Autocatalysis 3: Diversify agents to keep flows going.—The system uses three main species of
agents: place agents, walker agents, and ghost agents. In addition, different resources have
different walkers, different regions have different place agents, and ghosts diversify themselves
through stochastic movement. Walkers and ghosts deposit and sense pheromones in the place
agents, and thus pass information among themselves.

Function 1: Generate behavioral diversity.—The system’s main function is path planning, in
which all agents participate without any of them dominating. An important class of diversity
among ghost agents is the equation by which they translate pheromone levels that they sense in
their immediate environment into movement decisions. Originally, we hand-tuned the parameters
of this equation. We found improved performance when we allowed the parameters to vary
around the hand-tuned mean, and even more improvement when we evolved the parameters [44].

Function 2: Give agents access to a fitness measure.—The speed with which a ghost reaches a
potential target and returns home is a good measure of the fitness of its search parameters, so we
use the lifetime remaining to a ghost as its fitness measure.

Function 3: Provide a mechanism for selecting among alternative behaviors.—We use a
variety of the genetic algorithm for adjusting the distribution of search parameters in the ghost
population. An important characteristic of our application is that this adaptation happens as the
system operates, not in an off-line planning process.

5 Conclusion and Prospect
Swarming systems have demonstrated their effectiveness as an alternative model of cognition.
This experience is leading to a growing body of engineering knowledge for the deployment of
such systems. They are best suited for resource-constrained systems of discrete interacting
elements that exhibit distribution, decentralization, and dynamic change. The self-organization
that gives these systems their power requires not only interaction among the agents, but the
potential for autocatalytic loops, and some mechanism (such as synthetic evolution or particle
swarm optimization) for selecting appropriate behaviors from a wider repertoire based on some
fitness function. We have deployed these mechanisms successfully in a number of applications,

10/31/2003 12:12 PM Page 25

 Engineering Swarming Systems

including distributed pattern recognition, team formation and management, dynamic target
selection and path formation, resource allocation, document search and retrieval, and ecosystem
management.

This engineering perspective on swarming systems recognizes that for some applications or
problems, conventional cognitive techniques may be more appropriate. Now that we understand
where swarming systems are appropriate and some of the principles that enable them, the next
challenge is integrating them with more conventional cognitive systems. We are pursuing several
lines of research in support of hybrid agent systems, including

• using swarming systems as internal “brains” for more conventional cognitive systems;

• integrating fine-grained and coarse-grained agents as peers in a single system, with fine-
grained agents providing ease of implementation and reduced need for knowledge
engineering, while coarse-grained agents provide a clearer cognitive interface to human
stakeholders;

• developing mathematical methods for imputing cognitive behavior to non-cognitive
agents in support of integration with cognitive agents;

• developing a design and specification methodology at a sufficiently abstract level that it
can be applied to either class of agent.

6 Acknowledgments
This work is supported in part by DARPA under the JFACC program and WASP seedling. The
views and conclusions in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the US Government.

7 References
[1]H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight, R. Nagpal, E. Rauch, G.

J. Sussman, and R. Weiss. Amorphous Computing. Communications of the ACM, 43(5):74-
82, 2000. URL citeseer.nj.nec.com/abelson95amorphous.html.

[2]J. Arquilla and D. Ronfeldt. Swarming and the Future of Conflict. DB-311, RAND, Santa
Monica, CA, 2000. URL http://www.rand.org/publications/DB/DB311.

[3]P. Ball. The Self-Made Tapestry: Pattern Formation in Nature. Princeton, NJ, Princeton
University Press, 1996.

[4]G. Beni. The Concept of Cellular Robotic System. In Proceedings of IEEE Int. Symp. on
Intelligent Control, Los Alamitos, CA, pages 57-62, IEEE Computer Society Press, 1988,
1988.

[5]G. Beni and S. Hackwood. Stationary Waves in Cyclic Swarms. In Proceedings of IEEE Int.
Symp. on Intelligent Control, Los Alamitos, CA, pages 234-242, IEEE Computer Society
Press, 1992, 1992.

[6]G. Beni and J. Wang. Swarm Intelligence. In Proceedings of Seventh Annual Meeting of the
Robotics Society of Japan, Tokyo, pages 425-428, RSJ Press, 1989, 1989.

[7]G. Beni and J. Wang. Theoretical Problems for the Realization of Distributed Robotic
Systems. In Proceedings of IEEE International Conference on Robotic and Automation, Los
Alamitos, CA, pages 1914-1920, IEEE Computer Society Press, 1991, 1991.

10/31/2003 12:12 PM Page 26

http://www.rand.org/publications/DB/DB311

 Engineering Swarming Systems

[8]C. K. Biebricher, G. Nicolis, and P. Schuster. Self-Organization in the Physico-Chemical and
Life Sciences. 16546, European Union, 1995.

[9]E. Bonabeau. Swarm Intelligence. In Proceedings of Swarming: Network Enabled C4ISR,
Tysons Corner, VA, ASD C3I, 2003.

[10] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to
Artificial Systems. New York, Oxford University Press, 1999.

[11] S. Brueckner. Return from the Ant: Synthetic Ecosystems for Manufacturing Control.
Dr.rer.nat. Thesis at Humboldt University Berlin, Department of Computer Science, 2000.
URL http://dochost.rz.hu-berlin.de/dissertationen/brueckner-sven-2000-06-
21/PDF/Brueckner.pdf.

[12] S. Brueckner and H. V. D. Parunak. Information-Driven Phase Changes in Multi-Agent
Coordination. In Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS
2003), Melbourne, Australia, pages 950-951, 2003. URL
http://www.erim.org/~vparunak/AAMAS03InfoPhaseChange.pdf.

[13] S. A. Brueckner and H. V. D. Parunak. Swarming Agents for Distributed Pattern
Detection and Classification. In Proceedings of Workshop on Ubiquitous Computing, AAMAS
2002, Bologna, Italy, 2002. URL http://www.erim.org/~vparunak/PatternDetection01.pdf.

[14] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau.
Self-Organization in Biological Systems. Princeton, NJ, Princeton University Press, 2001.

[15] C. Castelfranchi. Founding Agent's 'Autonomy' on Dependence Theory. In Proceedings
of 14th European Conference on Artificial Intelligence, Berlin, Germany, pages 353-357, IOS
Press, 2000.

[16] B. Clough. Emergent Behavior (Swarming): Tool Kit for Building UAV Autonomy. In
Proceedings of Swarming: Network Enabled C4ISR, Tysons Corner, VA, ASD C3I, 2003.

[17] J. P. Crutchfield. The Calculi of Emergence: Computation, Dynamics, and Induction.
Physica D, 75:11-54, 1994. URL
ftp://ftp.santafe.edu/pub/CompMech/papers/CalcEmerg1_46.ps.Z.

[18] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26(1):1-
13, 1996.

[19] E. H. Durfee and V. R. Lesser. Partial Global Planning: A Coordination Framework for
Distributed Hypothesis Formation. IEEE Transactions on Systems, Man, and Cybernetics,
21(5):1167-1183, 1991. URL citeseer.nj.nec.com/durfee91partial.html.

[20] S. J. A. Edwards. Swarming on the Battlefield: past, Present, and Future. MR-1100-OSD,
RAND, Santa Monica, CA, 2000.

[21] S. J. A. Edwards. Military History of Swarming. In Proceedings of Swarming: Network
Enabled C4ISR, Tysons Corner, VA, ASD C3I, 2003.

[22] M. Fenster, S. Kraus, and J. S. Rosenschein. Coordination without Communication:
Experimental Validation of Focal Point Techniques. In Proceedings of International
Conference on Multi-Agent Systems (ICMAS'95), San Francisco, CA, pages 102-108, AAAI,
1995.

[23] B. R. Gaines. Mediator Research Program. 1995. Web page,
http://ksi.cpsc.ucalgary.ca/projects/Mediator/.

[24] M. R. Genesereth, M. Ginsburg, and J. S. Rosenschein. Cooperation without
Communication. In Proceedings of National Conference on Artificial Intelligence (AAAI'86),
pages 51-57, AAAI, 1986.

10/31/2003 12:12 PM Page 27

http://dochost.rz.hu-berlin.de/dissertationen/brueckner-sven-2000-06-21/PDF/Brueckner.pdf
http://dochost.rz.hu-berlin.de/dissertationen/brueckner-sven-2000-06-21/PDF/Brueckner.pdf
http://www.erim.org/~vparunak/AAMAS03InfoPhaseChange.pdf
http://www.erim.org/~vparunak/PatternDetection01.pdf
ftp://ftp.santafe.edu/pub/CompMech/papers/CalcEmerg1_46.ps.Z
http://ksi.cpsc.ucalgary.ca/projects/Mediator/

 Engineering Swarming Systems

[25] P.-P. Grassé. La Reconstruction du nid et les Coordinations Inter-Individuelles chez
Bellicositermes Natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai
d'interprétation du Comportement des Termites Constructeurs. Insectes Sociaux, 6:41-84,
1959.

[26] S. Hackwood and G. Beni. Self-Organizing Sensors by Deterministic Annealing. In
Proceedings of IEEE/RSJ International Conference on Intelligent Robot and Systems, Los
Alamitos, CA, pages 1177-1183, IEEE Computer Society Press, 1991, 1991.

[27] S. Hackwood and G. Beni. Self-organization of Sensors for Swarm Intelligence. In
Proceedings of IEEE Int. Conf. on Robotics and Automation, pages 819-29, 1992.

[28] M. Heusse, S. Guérin, D. Snyers, and P. Kuntz. Adaptive Agent-Driven Routing and
Load Balancing in Communication Networks. Advances in Complex Systems, 1:234-257,
1998.

[29] E. Hornung and B. M. Bryan, Editors. The Quest for Immortality: Treasures of Ancient
Egypt. Washington, DC, National Gallery of Art, 2002.

[30] D. Inbody. Swarming: Historical Observations and Conclusions. In Proceedings of
Swarming: Network Enabled C4ISR, Tysons Corner, VA, ASD C3I, 2003.

[31] C. Jacob. Illustrating Evolutionary Computation With Mathematica. San Francisco,
Morgan Kaufmann, 2001.

[32] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. San Francisco, Morgan
Kaufmann, 2001.

[33] L. Leonardi, M. Mamei, and F. Zambonelli. Co-Fields: Towards a Unifying Model for
Swarm Intelligence. DISMI-UNIMO-3-2002, University of Modena and Reggio Emilia,
Modena, Italy, 2002. URL http://polaris.ing.unimo.it/didattica/curriculum/marco/Web-Co-
Fields/stuff/Swarm.pdf.

[34] MIT. Amorphous Computing Home Page. 2003. Web Site,
http://www.swiss.ai.mit.edu/projects/amorphous/.

[35] E. Neufeld. Insects as Warfare Agents in the Ancient Near East. Orientalia, 49(1):30-57,
1980.

[36] E. Ott, C. Grebogi, and J. A. Yorke. Controlling Chaos. Physical Review Letters,
64(11):1196-1199, 1990.

[37] H. V. D. Parunak. Distributed AI and Manufacturing Control: Some Issues and Insights.
In Y. Demazeau and J.-P. Müller, Editors, Decentralized AI, pages 81-104. North-Holland,
1990.

[38] H. V. D. Parunak. ’Go to the Ant’: Engineering Principles from Natural Agent Systems.
Annals of Operations Research, 75:69-101, 1997. URL
http://www.erim.org/~vparunak/gotoant.pdf.

[39] H. V. D. Parunak and S. Brueckner. Entropy and Self-Organization in Multi-Agent
Systems. In Proceedings of The Fifth International Conference on Autonomous Agents
(Agents 2001), Montreal, Canada, pages 124-130, ACM, 2001. URL
www.erim.org/~vparunak/agents01ent.pdf.

[40] H. V. D. Parunak and S. Brueckner. Swarming Coordination of Multiple UAV's for
Collaborative Sensing. In Proceedings of Second AIAA "Unmanned Unlimited" Systems,
Technologies, and Operations Conference, San Diego, CA, AIAA, 2003. URL
http://www.erim.org/~vparunak/AIAA03.pdf.

[41] H. V. D. Parunak, S. A. Brueckner, and J. Sauter. Digital Pheromone Mechanisms for
Coordination of Unmanned Vehicles. In Proceedings of First International Conference on

10/31/2003 12:12 PM Page 28

http://polaris.ing.unimo.it/didattica/curriculum/marco/Web-Co-Fields/stuff/Swarm.pdf
http://polaris.ing.unimo.it/didattica/curriculum/marco/Web-Co-Fields/stuff/Swarm.pdf
http://www.swiss.ai.mit.edu/projects/amorphous/
http://www.erim.org/~vparunak/gotoant.pdf
http://www.erim.org/~vparunak/agents01ent.pdf
http://www.erim.org/~vparunak/AIAA03.pdf

 Engineering Swarming Systems

10/31/2003 12:12 PM Page 29

Autonomous Agents and Multi-Agent Systems (AAMAS 2002), Bologna, Italy, pages 449-450,
2002. URL www.erim.org/~vparunak/AAMAS02ADAPTIV.pdf.

[42] H. V. D. Parunak, M. Purcell, and R. O'Connell. Digital Pheromones for Autonomous
Coordination of Swarming UAV's. In Proceedings of First AIAA Unmanned Aerospace
Vehicles, Systems,Technologies, and Operations Conference, Norfolk, VA, AIAA, 2002.
URL www.erim.org/~vparunak/AIAA02.pdf.

[43] K. Pister. Smart Dust: Autonomous sensing and communication in a cubic millimeter.
2001. Web Page, http://robotics.eecs.berkeley.edu/~pister/SmartDust/.

[44] J. A. Sauter, R. Matthews, H. V. D. Parunak, and S. Brueckner. Evolving Adaptive
Pheromone Path Planning Mechanisms. In Proceedings of Autonomous Agents and Multi-
Agent Systems (AAMAS02), Bologna, Italy, pages 434-440, 2002. URL
www.erim.org/~vparunak/AAMAS02Evolution.pdf.

[45] F. Schweitzer and J. Zimmermann. Communication and Self-Organization in Complex
Systems: A Basic Approach. In M. M. Fischer and J. Fröhlich, Editors, Knowledge,
Complexity and Innovation Systems, pages 275-296. Springer, Berlin, Germany, 2001. URL
http://summa.physik.hu-berlin.de/~frank/p_webwien.html.

[46] C. R. Shalizi. Causal Architecture, Complexity and Self-Organization in Time Series and
Cellular Automata. Ph.D. Thesis at University of Wisconsin, Department of Physics, 2001.

[47] D. Wolpert and K. Tumer. Collective Intelligence. 2002. Web site,
http://ic.arc.nasa.gov/projects/COIN/index.html.

[48] M. J. Wooldridge and N. R. Jennings. Pitfalls of Agent-Oriented Development. In
Proceedings of 2nd Int. Conf. on Autonomous Agents (Agents-98), Minneapolis, MN, pages
385-391, 1998. URL http://citeseer.nj.nec.com/wooldridge98pitfalls.html.

http://www.erim.org/~vparunak/AAMAS02ADAPTIV.pdf
http://www.erim.org/~vparunak/AIAA02.pdf
http://robotics.eecs.berkeley.edu/~pister/SmartDust/
http://www.erim.org/~vparunak/AAMAS02Evolution.pdf
http://summa.physik.hu-berlin.de/~frank/p_webwien.html
http://ic.arc.nasa.gov/projects/COIN/index.html
http://citeseer.nj.nec.com/wooldridge98pitfalls.html

	Abstract
	WHAT is Swarming?
	Swarming
	Organization
	Self-Organization and Emergence
	Alternatives to Self-Organization

	WHERE would you want to use Swarming?
	Discrete
	Deprived (Resource-Constrained)
	Distributed
	Decentralized
	Dynamic

	WHY does Swarming work?
	Coupled Processes
	How Processes can be Coupled
	Design Principles Derived from Coupled Processes

	Autocatalytic Potential
	What is Autocatalysis?
	Design Principles Derived from Autocatalysis

	Function
	How Systems Adjust to Required Function
	Design Principles Derived from Functional Adjustment

	HOW can we apply these principles in engineered systems?
	Pattern Recognition in a Sensor Network [13]
	The Problem
	Summary of Architecture
	Principles

	Searching and Imaging with Unmanned Air Vehicles [40]
	The Problem
	Summary of Architecture
	Principles

	Dynamic Target Selection and Path Planning [41, 42]
	The Problem
	Summary of Architecture
	Principles

	Conclusion and Prospect
	Acknowledgments
	References

