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Abstract
This paper is inspired by the way birds such as albatrosses are able to exploit wind gradients at
the surface of the ocean for staying aloft for very long periods while minimizing their energy
expenditure. The corresponding behaviour has been partially reproduced here via a set of
Takagi–Sugeno–Kang fuzzy rules controlling a simulated glider. First, the rules were
hand-designed. Then, they were optimized with an evolutionary algorithm that improved their
efficiency at coping with challenging conditions. Finally, the robustness properties of the
controller generated were assessed with a view to its applicability to a real platform.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Although designing unmanned aerial vehicles (UAVs)
represents a great challenge for engineers because such
platforms have to face complex and dynamic environments,
numerous research efforts have been devoted to this endeavour
and it has now become relatively easy to build autonomous
flying robots, even with off-the-shelf components [1]. But
the decisional autonomy of these platforms is still limited to
a capacity to follow a given trajectory defined by a set of
GPS waypoints. For many applications, a higher degree of
autonomy is required that would make it possible to give a
robot watching over forest fires, for instance, a simple order
like ‘stay over this area’. This would entail providing the
robot with a map of its environment and with the capacity to
self-localize within this map, but would avoid the necessity
of pre-defining a series of waypoints to be followed. More
importantly, such an approach would afford the robot the
possibility of autonomously and opportunistically choosing
its trajectory, so as to spare its energy consumption, a major
issue for current UAV technology. Indeed, small-scale fixed-
wing UAVs—with wingspans less than 2 m—currently exhibit
an energy autonomy of 1 or 2 h because they are committed
to permanent use of their motors. If one could find a way to

exploit the environment more efficiently, this autonomy could
be widely expanded. To this end, nature is a good source of
inspiration as lots of energy-saving strategies are exploited by
birds.

Indeed, some birds are able to fly for very long periods.
Albatrosses, for instance, can spend days in the air without
touching the ground. They can reach such a level of
performance because they are able to remain aloft without
flapping their wings, mainly by exploiting wind gradients, thus
saving precious energy. Likewise, birds of prey like eagles
gain altitude by turning inside thermals, and mountain birds
like jackdaws exploit slope-winds to fly without flapping their
wings. All these behaviours have been observed by biologists
[2–5] and exploited by humans to efficiently pilot gliders [6].
However, in the latter case, the glider is permanently controlled
by the human pilot, and the implementation of energy-saving
behaviours in autonomous flying robots has scarcely been
attempted yet, with the notable exception of a recent work
[7] on the exploitation of thermals. The corresponding robot
flies until a thermal is found, and then remains inside it by
turning round, thus gaining altitude.

This strategy is only one of those that can be deduced from
animal behaviours. It belongs to the static soaring category
because it exploits the air flowing upwards: to gain altitude,
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Figure 1. Trajectory used by the albatross for dynamic soaring. At the highest point of the trajectory, the albatros turns back to the wind and
starts diving to gain speed. At the lowest point, the albatros sharply turns to face the wind and exploits the speed gained during the dive to
gain altitude. At the end of this phase, the bird has reached the same altitude as that of its starting point. On average, the birds fly at a certain
angle α with respect to the wind.

the robot ‘just’ needs to remain inside the thermal. Another
strategy, that belongs to the dynamic soaring category, exploits
wind gradients. Here, there is no upward flow but a horizontal
wind, the speed of which varies with altitude, as may be
the case above the ocean or above a mountain slope. To
exploit such circumstances and save energy, a bird or a glider
must follow a cyclic trajectory, starting from a relatively high
altitude and flying down, wind in the back. Before hitting
the water or the ground, it must turn back sharply to face the
wind, in order to exploit the speed attained during the dive and
so gain altitude. When its relative speed becomes too slow,
it must turn back again, wind in the back and start another
cycle. When this strategy is tightly followed, the bird or glider
extracts energy from the wind gradient, and is thus able to
reach the same altitude it started from (figure 1).

Dynamic soaring has been studied from theoretical and
empirical perspectives [8–10]. Experienced pilots have
recently proved to be able to exploit dynamic soaring principles
on a small-scale glider [8]. Open loop controllers exhibiting
an optimal trajectory have been designed in simulation [11].
Preliminary work on closed loop control of this behaviour
revealed the difficulty of their implementation [12].

The objective of this research effort is to design such a
closed loop controller. Experiments reported here have been
done in simulation only, but with a view to assess the difficulty
of implementation on a real platform.

This work is part of the ROBUR project that aims
at building an artificial bird [13] within the framework of
the animat approach, which draws inspiration from animal
behaviour for the design of artificial autonomous agents able
to ‘survive’ or fulfil their mission in changing environments
[14]. Ultimately, this project should produce a flapping-wing
UAV able to take off, to land, to explore its environment and to
manage its energy resources by exploiting aerology conditions
or by getting back to a refilling station when required. The
work reported here is the first step in this long journey.

Figure 2. The different controls of the simulated glider: ailerons,
elevators and rudder.

2. Material and methods

2.1. Flight model

In order to test different controllers designed for dynamic
soaring, we developed a specific flight simulator with a realistic
aerodynamic model. This simulator is based on as perception–
action control loop with a time step of 40 ms, which means
that 25 times per second the controller provides orders to the
glider’s actuators, according to the current state of its sensors.
Wings are made of two panels with different dihedral angles—
i.e. 2◦ for the internal panel and 6◦ for the external—to improve
the stability of the glider.

The aerodynamic model integrates the forces exerted
on the two panels that constitute a wing, and on the two
perpendicular surfaces that characterize the tail (figure 2).
These forces depend on the characteristic curves that describe
how the lift (CZ) and drag (CX) coefficients vary with
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Figure 3. Variation of the lift/drag factor (CZ/CX) according to
the angle of attack for the whole glider. Aspect ratios are taken into
account in the calculation of the characteristic curves of each panel.
The total wing area is held constant at 0.5 m2, no sideslip effect is
present here.

a panel’s angle of attack [15]. The aerodynamic force
exerted on each panel is calculated according to the following
formula [16]:

�FA =

−CX

0
−CZ


 ρSVA

2

2

�FA being the aerodynamic force exerted on a given panel, ρ

the air density, S the area of the panel and VA the airspeed.
Aerodynamic forces on the body part of the glider

are neglected here. The independent calculations of the
forces on each panel allow the model to take implicitly into
account some aerodynamic effects such as induced drag,
environmental vortices and wind gradients. Indeed, in a wind
gradient, the airspeed of each panel will be different, and
the resulting aerodynamic forces and momentums will reflect
these differences. The characteristic curves of the panels are
calculated to take into account the panel’s aspect ratio. Figure 3
shows the resulting lift/drag ratio when the independent forces
are integrated to calculate the aerodynamic force applied on the
whole glider. However, it should be noted that the turbulences
and vortices generated by the glider’s geometry are not taken
explicitly into account. The aerodynamic ground effect is also
not modelled here. Although this choice can be discussed,
we consider that the short period spent near the ground, and
the high bank angle at this point of the trajectory, allow us to
safely ignore this effect.

These aerodynamic forces are then integrated using
classical solid body equations to determine the global linear
and angular accelerations of the glider. Its weight is added to
these forces and the system’s state (position and velocity) is
updated at each time step.

In this simplified aerodynamic model, the controls of the
glider are assumed to modify the angle of attack of its panels.
Each swivelling control surface is thus characterized by an
efficiency coefficient ksi with i = 0 for the ailerons, i = 1
for the elevator and i = 2 for the rudder. This coefficient is

roughly equivalent to the proportion of the panel’s surface it
occupies. We chose:

• ks0 = −0.12 (it has the same value for the internal and
the external parts of a wing)

• ks1 = −0.15
• ks2 = −0.5.

The amplitude of the controller’s action on a particular
control surface is represented by a value di (d0 = A

corresponds to the aileron command, d1 = E is the elevator
command and d2 = R is the rudder command, as explained
later on) ranging between −1 and +1, which is assumed to
modify the angle of attack αRi of the corresponding panel
according to the formula: αMi = αRi + di ∗ ksi , where αMi is
the modified value.

Hopefully, this procedure provides a realistic enough
simulation to make it possible to re-use the controllers thus
generated on a real motorized glider. Be that as it may,
although this simulation is based on a motorized glider
geometry, the corresponding propulsion capacities are never
used, and only the wind serves to move the UAV. Its physical
characteristics are accordingly set to:

• mass: 3.6 kg
• length: 1.5 m
• wing span: 2.75 m (variable in the experiment described

in subsection 3.2)
• total wing area: 0.5 m2 (70% for the internal panel, 30%

for the external panel)
• wings sweep angle: 0◦

• wings dihedral angle: 2◦ for the internal panel and 6◦ for
the external panel

• wings twist angle: 2.5◦.

More details about the mass characteristics of the glider
are presented in appendix A.

2.2. Wind model

The vertical wind gradient that may be used for dynamic
soaring above the ocean stretches over a thin layer (a few
meters) in which the wind is slowed down by the interactions
with the water surface. Observations made for winds of low to
medium speed indicate that this gradient may be represented
as a logarithmic function [17]. More precisely, we used the
function described in [9] which defines the wind speed VW at
altitude h as:

VW = VWREF

log(h/H0)

log(HREF/H0)

where HREF is the reference altitude, i.e., 10 m in this
application. H0 is the altitude at which the wind speed equals
zero, here it is set to 0.03 m. VWREF is the wind speed at
reference altitude. Its default value is 20 m s−1. This speed
will occasionally be changed in some experiments described
later.

The wind gradient described by this function is presented
in figure 4.
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Figure 4. Wind-speed gradient used in the model.

2.3. Sensors and controls

The sensory system of birds has not been thoroughly studied
yet, but some relevant observations have been made [18].
Briefly, birds possess the same kind of visual receptors as
humans (rods and cones) but they can discriminate colours
better, see ultra-violet light, and perceive light polarization.
They also have magnetic receptors, acting like compasses.
Their tactile perception allows them to precisely sense
pressure, pressure change and pressure change acceleration,
thus affording important information about air speed and air
acceleration.

Nevertheless, because a long-term objective of this work
is to apply it to a real glider, sensors as complex as those of
birds were not used here. Instead, we relied on more classical
sensors to get the data necessary for flight control: an altimeter
to get the glider’s altitude, and an inertial measurement unit
to get orientation angles. The variables measured by these
sensors were:

• z, glider’s altitude

• ψ , glider’s heading with respect to the wind

• θ , glider’s pitch angle with respect to an horizontal plane

• ϕ, glider’s bank angle with respect to an horizontal plane.

We initially considered that these sensors were perfect, in
the sense that they were expected to provide exact values in
real time. Later on in this paper, the influence of noisy sensors
on the generated behaviour will be studied.

To control the glider, classical effectors were used, i.e., a
pair of ailerons, a pair of elevators and a rudder (figure 2). As
explained above, the corresponding variables were:

• A, aileron command comprised between −1 (maximum
bank to the right) and +1 (maximum bank to the left);

• E, elevator command comprised between −1 (maximum
upward) and +1 (maximum downward);

• R, rudder command comprised between −1 (maximum
on the right) and +1 (maximum on the left).

2.4. Takagi–Sugeno–Kang fuzzy rules

Controllers based on fuzzy rules have been successfully used
for the control of several UAV systems [19, 20]. Their main
advantage is to call upon explicit rules, unlike neural networks
whose inner workings may be difficult to decipher. They
are particularly well suited for dealing with incomplete or
uncertain data. The corresponding rules can be hand-designed
by a human, or automatically generated by an evolutionary
algorithm.

The principle of such fuzzy controllers consists of
designing a set of rules that associate a particular action
to a given sensory state. Such rules are made up with a
condition part and an action part. The former may refer to
fuzzy sets associated with each input, e.g., ‘IF z is low AND
ż is greatly negative’. The sum of the membership values
of each input variable gives the strength of the rule. The
latter may be fuzzy or not. Rules with fuzzy actions are
called Mamdani rules [21], and sometimes require a tricky
defuzzification procedure to generate the orders to be send to
the system’s actuators. Instead, in this work, we used Takagi–
Sugeno–Kang (TSK) rules [22] for which the consequence
of a rule is not a fuzzy set but a linear combination of the
input variables. This method allows faster calculations than
classical defuzzyfication methods. Thus, a typical TSK fuzzy
rule would be for example ‘IF z is low AND ż is greatly
negative THEN E = 0.25 + 0.5z − 0.25ż’.

It is also simple to make TSK fuzzy rules evolve via an
evolutionary algorithm, as demonstrated, for instance, with
the control of a real helicopter [23]. Fuzzy set limits and rule
coefficients being simple real numbers, it is easy to define the
corresponding cross-over and mutation operators, a point that
will be touched on later in this section.

2.5. The controller’s bio-inspired design

In the first stage, we hand-designed a reference controller with
rules inspired by observations of real albatrosses. This way, we
checked that a TSK controller was well suited for this problem
and we set a base for further evolutionary improvements.

In his 1982 observations [2], Pennycuick described the
dynamic soaring behaviour in these terms:

A bird soaring across wind, along a wave, would
from time to time turn into wind and pull up sharply,
then turn at the top of the climb and glide off again
across wind. The turns initiating and completing
this manoeuvre were often abrupt and very steeply
banked, up to 70◦. This behaviour was seen in all
the albatross species, and also in the giant petrel and
white-chinned petrel.

Consequently, we decided to decompose the dynamic
soaring behaviour of our controller into two phases:

• an ascending phase in which the bird faces the wind and
gains altitude,

• a descending phase in which the bird is back to the wind
and dives to gain speed.
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More precisely, we wrote two sets of rules: one for turning
towards the wind origin when the glider is low (ascending
phase), and one for turning back to the wind when it is
high (descending phase). The corresponding fuzzy sets were
defined by ramp-type membership functions (figure 5).

The turns defined by these two sets of rules need to be very
sharp, therefore they were triggered using elevators with a very
high bank angle. The rudder was used to prevent the glider
from plunging right down to the sea. As for the ailerons, they
were used to maintain the bank angle. With these principles,
we wrote the first rules for the reference controller. Then we
empirically improved the values defining the fuzzy sets, as
well as other parameters of the rules, until we obtained an
improved and coherent behaviour. Here are the details of the
three hand-designed rules for turning back to the wind:

• When the glider is high, the elevators must be raised in
order to trigger a sharp descent, but they also have to
control the pitch angle to prevent the glider from diving
too quickly. They also must be lowered at the end of
the turn, when the glider is almost back to the wind.
Therefore, the first rule is ‘If z is high, E = −0.6 +
0.01θ + 0.006(ψ + 180)’.

• When the glider is high, it turns sharply to the right1. The
rudder must then be put to the left in order to prevent
the glider from diving due to the high bank angle2. The
corresponding R value depends on the bank angle itself,
and on the heading in order to trigger diving when the
turn ends. Therefore, the second rule is ‘If z is high,
R = −1.0 + 0.006(ψ + 180) + 0.01ϕ’.

• When the glider is high, we use the ailerons to increase
the bank angle for the turn to the right. The value for
the ailerons depends on the bank angle because we want

1 We arbitrarily chose this direction, with the consequence that the glider
moved from north-west to south-east.
2 In this configuration, the rudder is almost horizontal and acts like the
elevators in the glider’s nominal position.

Figure 6. Glider’s trajectory and position of its control surfaces in
each phase. See the text for details.

to stabilize it, and on the heading because we want to
decrease the bank angle at the end of the turn. Therefore,
the third rule is ‘If z is high, A = −1.0 + 0.006(ψ +180)+
0.007ϕ’.

The three rules for turning towards the wind rely on the
same principles:

• If z is low, E = −0.8 + 0.02θ + 0.005(ψ + 180);
• If z is low, R = 0.006(ψ + 180) + 0.01ϕ;
• If z is low, A = 0.006(ψ + 180) + 0.007ϕ.

The positions of the control surfaces in each phase of the
trajectory are shown in figure 6. Here we assume that the
wind blows from north to south. It should be mentioned that
the rules just described allow dynamic soaring in one direction
only, i.e., from the north-west to the south-east. To prompt
flights from north-east to south-west, we just have to replace
ψ by (360 − ψ), ϕ by −ϕ and to change the sign of the rules
for R and A. We will describe in section 3.3 some experiments
we did to evolve controllers able to fly in different directions.

In fact, it appeared that this hand-designed reference
controller exhibited the kind of behaviour we were interested
in, but it was not really efficient. More specifically, it
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worked only when the wind speed was high enough, and
it failed to keep the glider aloft beyond four complete
cycles. Nevertheless it constituted a good starting point for
its improvement via an evolutionary algorithm, as described
in the following section.

2.6. Evolutionary optimization

The goal of the evolutionary algorithm described here was to
generate a more efficient and more robust soaring behaviour.
This algorithm was initialized with the hand-designed rules of
the reference controller just described.

The genome of each controller was represented by a
vector of real variables, each number corresponding to a
rule parameter, or to a boundary of the altitude fuzzy set.
Each generation of controllers but the first contained 100
individuals, and the experiments involved 100 generations.
The first generation contained 1000 individuals in order to
increase the number of interesting controllers at the beginning
of the evolutionary run, and thus to accelerate the convergence
of the algorithm.

In each generation, the 20 best individuals were kept,
while the other 80 individuals were deleted (980 in the
first generation) and replaced by 80 new ones. The fitness
criteria that were used depended on the experiments that were
performed, and will be described in the next section. Each
creation of a new individual was done in two steps: first a
cross-over, then a mutation.

For the cross-over, two individuals were randomly
selected from among the survivors of the previous generation.
The probability of selection depended on individual rankings,
individuals with higher fitnesses being chosen more often than
those with lower fitnesses. Each gene of a new individual was
then inherited from one of its parents with an equal probability.

Mutations consisted of slightly changing the value of each
gene. The mutation of a gene value γ was defined by:

γt+1 = γt + N (0, µ ∗ τ)

where the functionN (0, µ∗τ) represents a normal distribution
of zero mean and standard deviation µ ∗ τ . µ is a mutation
factor defined for each gene, and τ is an attenuation factor
which decreases the amplitude of the mutations in the last
generations. Methods for automatically adapting the mutation
rate exist [24, 25], but the use of an attenuation factor, as done
here, leads to quicker convergence than alternative procedures.

The mutation factor µ was defined by:

• µ = 0.1 for genes corresponding to rule parameters,

• µ = 1.0 for genes corresponding to altitude fuzzy set
boundaries.

The attenuation factor τ has been determined empirically.
For generation g it was defined by equation:

τ = exp

(−g
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Figure 7. Evolution of the minimal wind speed that secures
dynamic soaring in the simulated glider.

3. Experiments and results

3.1. Low wind-speed conditions

The first series of experiments consisted of using the
evolutionary algorithm just described to generate controllers
able to secure a dynamic soaring behaviour under lower
wind-speed conditions than those required by the reference
controller. To limit simulation time, we assessed the fitness
of an individual by the minimal wind speed that maintained it
aloft for 1000 s, and tried to minimize this value.

For each individual, this process started with the nominal
wind speed to which the reference controller was adapted—
i.e., 20 m s−1—and proceeded with a dichotomous search.
Individuals that could not fly for the whole of the evaluation
period, even with the reference wind speed, were ranked
according to how long they stayed aloft.

For each generation, if the necessary wind speed for the
twentieth and less adapted individual was less than the current
reference wind speed, the corresponding value became the
new reference speed to be used for next generations. This
procedure greatly accelerated the computations.

Figure 7 shows the results obtained along 100 generations.
It appears that the best individual thus generated is able to
exhibit a dynamic soaring behaviour with a wind speed of
only 9.4 m s−1. By comparison, the minimum wind speed
needed by the albatross seems to be about 8.6 m s−1 [9].

It is interesting to compare the trajectory used by the
reference controller with the one used by the best evolved
controller (figures 8 and 9). The first loses altitude in each
cycle and ends up in the water after only four cycles. The
second keeps a constant altitude at the top of each cycle and
rapidly follows a periodical trajectory, although the wind speed
is twice as low.

Table 1 summarizes the differences between the hand-
designed controller and the evolved one. These differences are
neither negligible nor reflect drastic changes. They suggest
that the design of dynamic soaring controllers, like those
considered here at least, is a difficult task, as small changes
in the corresponding parameters may cause a glider to operate
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Figure 8. Longitudinal and transversal projections of the glider’s trajectory with the reference controller (wind speed: 20 m s−1). The flight
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Table 1. Comparison between hand-designed and automatically-evolved rules.

Hand-designed controller Evolved controller

Fuzzy sets
z is high, Ramp bounds 5.0 → 13.0 3.095 691 → 11.452 055
z is low, Ramp bounds 2.0 → 9.0 1.857 289 → 8.453 340

Rules
z is high, E = −0.6 + 0.006(ψ + 180) + 0.01θ −0.599 127 + 0.004 392(ψ + 180) + 0.006 740θ
z is high, G = −1.0 + 0.006(ψ + 180) + 0.01ϕ −1.056 806 + 0.002 087(ψ + 180) + 0.008 521ϕ
z is high, A = −1.0 + 0.006(ψ + 180) + 0.007ϕ −0.831 355 + 0.003 803(ψ + 180) + 0.014 658ϕ
z is low, E = −0.8 + 0.005(ψ + 180) + 0.02θ −1.288 160 + 0.006 382(ψ + 180) + 0.020 173θ
z is low, G = 0.0 + 0.006(ψ + 180) + 0.01ϕ 0.000 793 + 0.011 099(ψ + 180) + 0.006 601ϕ
z is low, A = 0.0 + 0.006(ψ + 180) + 0.007ϕ −0.002 391 + 0.009 162(ψ + 180) + 0.012 029ϕ

perfectly well, or to crash after a few cycles only. This remark
probably explains why we never succeeded in evolving such
controllers from scratch, and why they proved to be sensitive
to turbulences and sensory noise, as mentioned in section 3.4.

3.2. Wing aspect ratio

The goal of this series of experiments was to evaluate the
morphology of a real glider on which the dynamic soaring
behaviour studied here could be implemented. To this end,
we compared results obtained by changing the glider’s wing
aspect ratio ARW , defined as the ratio of the wing span SW

and the chord CW for a rectangular wing, or as the ratio of the
squared wing span and the wing area AW for a wing of any
shape (figure 10):

ARW = SW

CW

= SW ∗ SW

CW ∗ SW

= S2
W

AW

.

In these experiments, we increased the wing aspect ratio
by increasing the wing span and decreasing the wing chord.

The wing area and mass were held constant all the while.
Again, an evolutionary approach was used to seek the lowest
wind speed compatible with dynamic soaring for a variety
of aspect ratios. The corresponding results are shown in
figure 11.

These results show that dynamic soaring can be efficiently
performed for aspect ratios varying between 12 and 21. As
a comparison, the aspect ratio of an albatross’ wing roughly
equals 18 [9]. The existence of a lower limit can be related to
the fact that a low aspect ratio decreases the lift, and increases
the drag of the wing. This explains why gliders and migratory
birds have wings with high aspect ratios. As for the existence
of an upper limit, it has to do with the nature of the trajectory
used for dynamic soaring. Indeed, when the glider is near the
water, it makes a sharp turn on the wing to face the wind. The
bank angle is then very high, which means that a glider with a 2
m wing span will not be able to get much lower than 1 m before
hitting the water. The wind gradient being more important in
the first meters above water, a high aspect ratio can prevent
efficient dynamic soaring, as it will prevent the glider from
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Figure 10. Characterization of the wing span, the wing chord, and
the wing area that serve to calculate the wing’s aspect ratio.
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Figure 11. Minimum necessary wind speed as a function of the
wing aspect ratio. Efficient dynamic soaring, i.e., under slow
wind-speed conditions, can be performed for wing aspect ratios
varying between 12 and 21.

going low enough to take advantage of the steepest part of the
gradient3.

3.3. Soaring direction

In the experiments just described, the goal for the glider was
merely to stay aloft for the longest time, and the average
direction of the glider was not taken into account in the fitness.
In fact, the reference controller generates a trajectory whose
overall direction is oriented from north-west to south-east with
a wind blowing from the north. Here, we wanted to assess the

3 As our evolved controller brings the glider down to 1.32 m, one of its wings
is approximately 0.15 m above the water during the sharp turn (wing length
of 1.375 and bank angle of 58◦).

Figure 12. The range of average directions towards which a glider
can fly using the controllers evolved in this work.

possibility of evolving controllers able to move the glider in
different directions, against the wind for instance.

To this end, we changed the fitness function in order
to select individuals that flew in a given direction. More
precisely, the corresponding fitness function was the difference
between the glider’s mean heading and the target’s heading,
the goal being to minimize this function. The heading
variable ψ being defined as the angle between the wind and
the glider’s heading, the fitness function f (ind) was set to
f (ind) = abs(ψmean − ψtarget). For each generation, we
selected the individuals whose headings were the closest to
the target’s one.

Only two experiments were made in order to determine the
full range of directions that could be achieved with the kind
of controllers studied here. The first one sought controllers
generating flights against-the-wind (target heading = 180◦),
while the second one sought controllers generating back-to-
the-wind flights (target heading = 0◦). These experiments
made it possible to determine the minimum and maximum
angles relative to the wind that delimit the directions in which
the glider can fly.

Results obtained during the first experiment indicate that
the maximum angle between the glider’s heading and the
wind’s origin was 53◦. In the second experiment, the minimum
angle was 8◦.

Inasmuch as symmetrical flying-angle values may be
attained by making appropriate changes in a controller’s fuzzy
rules, it appears that angles between 8 and −8◦ can be reached
by adequately switching the desired direction between these
two values4. It may be concluded from this section that the full
range of flying directions afforded by the variety of controller
investigated in this work is [−53◦; 53◦] (figure 12).

To appreciate the significance of these results, we
thoroughly examined the flying behaviours generated by
three evolved controllers: the one corresponding to a mean
heading of 53◦—the maximum value—the one corresponding
to a mean heading of 8◦—the minimum value—the one
corresponding to a mean value of 30◦—arbitrarily chosen in
the preceding interval. The details of the rules that correspond
to these three controllers are given in appendix B.

4 If the glider spends 50% of its trajectory oriented towards 8◦ and 50%
oriented towards −8◦, the glider direction will be 0◦ on average.
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Figure 13. Altitude (a), orientation angles (heading (b), pitch (c) and roll (d)) and movement direction (e) of a glider flying towards three
different mean directions: 8◦, 30◦ and 53◦ relative to the wind. Data for 8◦ and 30◦ have been respectively shifted by 2.4 s and 1.5 s, to
synchronize the beginning of each cycle.

It thus appears that these controllers implement different
strategies. In particular, the 53◦ controller oscillates less
than the others (figures 13(b)–(d)) and remains approximately
between 0 and 10 m whereas other controllers reach far higher
altitudes (figure 13(a)). The movement direction imposed by
the 53◦ controller is almost always further from the wind than
those corresponding to the other controllers, even reaching a
peak at 90.5◦ (figure 13(e)). The movement direction angle is
greater in the lower part of the cycle than in the higher part
for all three controllers. This is particularly true with the 53◦

controller that makes the glider fly lower than with the two
other controllers: in this way, it avoids being carried by the
wind which is stronger at higher altitudes.

With respect to the two other controllers, it also appears
that the ‘53◦’ one generates greater forces serving to accelerate
along the lateral axis during the period when the altitude is
high (table 2). Such a strategy increases the lateral speed of
the glider during the first cycles, with the consequence that it
also increases the drag during this critical phase that makes
it possible to gain kinetic energy (figures 14 and 15). As a
result, the farther the glider is relatively to the wind direction,
the more energy it looses. According to our results, 53◦ seems

Table 2. Average value of projection on the Y-axis of the sum of
aerodynamic forces in the absolute frame. These values correspond
to the first 60 s of a test flight and accordingly mostly characterize
the transient phase. At steady state, the average value of Fyabs is
null, as the lateral speed is constant.

53◦ 30◦ 8◦

Average Fyabs (N) 0.69 0.34 −0.08
Average altitude zavg (m) 6.9 15.5 19.6
Average Fyabs (N)
for z > zavg 14.9 3.98 −3.79
for z < zavg −12.19 −3.6 2.9

to be the greatest angle for which an equilibrium can be found,
at least in the experimental setup used here.

These results stress the limits of our approach focussed
on dynamic soaring only. Indeed, the glider is unable
to follow a trajectory that is, on average, directed against
the wind, a performance of which albatrosses are perfectly
capable. This is due to the fact that these birds may use other
means than dynamic soaring for flying without self-propulsion.
For instance, Pennycuick observed albatrosses flying without
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Figure 14. Resultants of aerodynamic forces projected on the
longitudinal axis of the glider (Fx). Fx is lesser with the 53◦

controller than with the two others. In particular, it is negative and,
most of the time, smaller than the others when z is greater than zavg.

flapping their wings with a very low wind, or even with no
wind at all [2] and, because dynamic soaring is impossible
under these conditions, he suggested that another source of
energy is used by these birds:

The observations suggest [ . . . ] that in practice most
of the energy for windward pull-ups comes from
slope lift [ . . . ] and relatively little from the wind
gradient. The wind gradient may supply relatively
more energy in downwind flight, but no direct
observations were obtained to support this.

It would therefore be necessary to model such slope
currents along the waves to be able to reproduce the trajectories
of albatrosses more precisely.

3.4. Control robustness

Other experiments were run to test the robustness of the
controllers developed here. More precisely, we evaluated
their robustness to variations under initial conditions, to wind
turbulences, and to sensory noise. It should be noted that
these experiments were not designed to assess a controller’s
robustness to particular conditions, which would require
a much more realistic environmental model, but rather to
evaluate the genericity of the evolved controllers. We only
look for an answer to the question ‘are these controllers able
to cope with slight changes in the environment?’. Answers
to the questions ‘are these controllers able to cope with a real
environment?’ and ‘are these controllers able to adjust their
behaviour depending on the environment?’ are, of course,
related to this study, but they will be investigated thoroughly
in a future work.

Concerning robustness to initial conditions, we evolved
controllers as we did in the first experiment, but starting
with a wider range of altitude, heading and relative speed
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Figure 15. Kinetic energy variations for controllers generating
flights in different directions. 6.9 m being the average value of
altitude corresponding to the 53◦-controlled glider, the period when
altitude exceeds this value corresponds to the acceleration phase of
the glider. This acceleration is lesser for the 53◦ controller than for
the other two. Kinetic energies corresponding to the 30◦ and 8◦

controllers are shifted in time by respectively 1.1 s and 1.8 s, in
order to synchronize the three cycles.

conditions. These conditions were set at random in the
following ranges:



−135◦ − δ ∗ 10◦ < ψ < −135◦ + δ ∗ 10◦

15 m − δ ∗ 0.5 m < h < 15 m + δ ∗ 0.5 m
20 m s−1 − δ ∗ 0.5 m s−1 < V < 20 m s−1

+ δ ∗ 0.5 m s−1.

If ten consecutive runs were successful—i.e. if the glider
could remain aloft for the whole experiment—we considered
the individual as adapted to the variation rate δ.

The results that were obtained indicate that the best
evolved controllers were able to stand a variation rate of 9,
which means they could maintain dynamic soaring with initial
conditions in the ranges:


−225◦ < ψ < −45◦

10, 5 m < h < 19, 5 m
15, 5 m s−1 < V < 24, 5 m s−1.

Concerning robustness to turbulences, the fitness function
was the maximum amplitude of wind-speed perturbations
tolerable to the controller. These perturbations were
represented as a noise vector added to the reference wind
vector. At each time step, the noise vector amplitude was
modified by a random value between −0.04 and +0.04 m s−1

and its heading was modified by a random value between
−0.6 and +0.6◦ (corresponding to a maximum change rate of
1 m/s/s and 15◦/s). This noise vector was added to the
reference wind vector. Winds at other altitudes were then
computed as stated in section 2.2, so the noise was less
important at lower altitudes where the wind was slower.

Controllers able to keep the glider aloft for ten consecutive
experiments with a given maximum turbulence amplitude were
considered adapted to this noise level. Results indicate that
the best evolved controllers were able to stand a maximum
turbulence amplitude of 1.7 m s−1 for a reference wind set at
20 m s−1.
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Finally, to assess the robustness to sensory noise, we did
not use evolution. Instead, we simply tested the controller
evolved in the experiment described in subsection 3.1, using
a reference wind speed of 10 m s−1 and adding to the
sensors a Gaussian noise with a zero mean and a standard
deviation that was systematically varied. The results presented
here correspond to the maximum standard deviation value
for which ten consecutive experiments were successful, in
the sense that the glider remained aloft for more than
1000 s:

• maximum standard deviation for noise on altimeter:
0.09 m

• maximum standard deviation for noise on ψ : 1◦

• maximum standard deviation for noise on θ : 1◦

• maximum standard deviation for noise on φ: 1.5◦.

Although such results seem to indicate that robust control
requires a sensory precision that exceeds that of current off-the-
shelf devices, it is still possible that this conclusion will have
to be amended if more robust controllers are sought through
improved evolutionary approaches. For instance, one could
select an individual able to simultaneously cope with a low
and turbulent wind, on the one hand, and with noisy sensors,
on the other hand. Likewise, it is still possible that more
robust controllers will be generated using rules better adapted
to sensory noise and environmental conditions than those that
were used here.

4. Discussion

The main advantage of the dynamic soaring controllers
described in this paper is the simplicity of their design and
optimization: a first controller has been hand-designed and
then optimized by evolutionary algorithms. The trajectories
these controllers generate are very similar to those exhibited
by albatrosses above the ocean, thus demonstrating that such a
natural behaviour can be implemented with few simple fuzzy
rules.

However, if they are able to keep a glider aloft under low
wind conditions, similar to those an albatross can cope with
during dynamic soaring, these controllers cannot get energy
from other aerological conditions, like slope wind, which this
bird is able to exploit for flying without flapping its wings.
These conditions allow it to fly against the wind for example,
a behaviour that the controllers studied here are unable to
exhibit. To reach a level of performance similar to that of
an albatross, several other controllers should be designed,
for instance a series of low-level controllers able to exploit
other aerological conditions, and a high-level controller able
to switch between different behaviours, i.e. from static soaring
to dynamic soaring.

Despite the fact that the apparent lack of robustness of the
controllers studied here to noisy sensors, or to wind turbulence,
could probably be improved with appropriate evolutionary
approaches, controlling dynamic soaring is intrinsically a
difficult problem because the corresponding trajectories must
be very precise. In particular, when a glider flies at a few
centimetres above the ocean’s surface, small errors in sensors,

or small wind turbulences, may be enough to make it touch
the water. To help avoid such a fatal issue, robust filtering
methods could be used, as well as avoidance strategies based
on optical flow that have already proved to be efficient in
similar contexts [26]. Likewise, other rules could be tried that
would hopefully correct the trajectory more often and more
precisely.

It is also interesting to note that, if the wing aspect ratio is
kept small enough, the parameters of the controllers obtained
after evolution show only small differences compared to those
of the reference controller. This however has a great impact
on the performance of the glider, thus suggesting that the
generated trajectories are very sensitive to these parameters.
This renders the evolution of such a controller from scratch
extremely difficult, as this process will get a substantial
reward only when it is near the optimal solution. Indeed,
very few solutions have a high fitness, the majority of them,
especially those of the first generations, being characterized
by low fitness values that cannot guide evolution. It is highly
probable that, even with other sorts of controllers—e.g., neural
networks—or with a different set of fuzzy rules, the same
bootstrapping difficulty would be experienced because of the
required precision in the generated trajectories.

5. Conclusion

Although dynamic soaring is a complex behaviour that needs
to be very precisely controlled, the results that have been
presented here demonstrate that it may be generated by a
set of simple fuzzy rules bootstrapped by an educated guess.
These results also suggest that the implementation of such
rules on a real glider capitalizing on simple off-the-shelf
sensors is possible, provided the corresponding platform is
not used under too challenging conditions, i.e., with a too low
and turbulent wind, or with too noisy sensors, and provided
trajectories against the wind are not sought. Some hints for
relaxing these constraints have been given in the text.
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Appendix A. Mass characteristics of the glider

Table A1 summarizes the mass characteristics of the glider.
The solid body equations are calculated according to these
values.

Appendix B. Control rules evolved for different
flight directions

Table B1 specifies the rules for controllers evolved for different
directions of flight relative to the wind.
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Table A1. Mass characteristics of the simulated glider. Element frames have the same orientation as the glider frame, but they are translated
by the position vector.

Position (m) Centre of gravity (m) Inertial matrix
Element Glider frame Mass (kg) Element frame Element frame

Right wing (int.)


 −0.402 083

0.419 744
−0.014 6578


 0.6


 −0.052 0833

−9.730 64 × 10−18

−0.018 75





 0.058 6406 2.619 41 × 10−21 −0.000 976563

2.619 41 × 10−21 0.003 895 61 1.012 66 × 10−19

−0.000 976 563 1.012 66 × 10−19 0.062 3956




Right wing (ext.)


−0.357 44

1.062 26
−0.052 73


 0.2


−0.038 5076

−0.019 6473
−0.015 557





 0.021 8375 −0.002 178 37 −0.000 621 278

−0.002 178 37 0.002 273 67 −0.000 640 059
−0.000 621 278 −0.000 640 059 0.024 0123




Left wing (int.)


 −0.402 083

−0.419 744
−0.014 6578


 0.6


 −0.052 0833

−9.730 64 × 10−18

−0.018 75





 0.058 6406 2.619 41 × 10−21 −0.000 976 563

2.619 41 × 10−21 0.003 895 61 1.012 66 × 10−19

−0.000 976 563 1.012 66 × 10−19 0.062 3956




Left wing (ext.)


−0.357 44

−1.062 26
−0.052 73


 0.2


−0.038 5076

0.019 6473
−0.015 557





 0.021 8375 0.002 178 37 −0.000 621 278

0.002 178 37 0.002 273 67 0.000 640 059
−0.000 621 278 0.000 640 059 0.024 0123




Tail (horiz.)


−1.501 67

0
0


 0.1


 −0.041 6667

5.511 39 × 10−17

−0.006 25





 0.029 8906 −4.572 76 × 10−19 −0.000 260 417

−4.572 76 × 10−19 0.002 456 3.011 45 × 10−20

−0.000 260 417 3.011 45 × 10−20 0.032 331




Tail (vert.)


 −1.31

0
−0.125


 0.1


 −0.052 441

−0.020 3419
−0.006 453 42





 0.005 276 51 −0.001 649 27 −0.000 344 249

−0.001 649 27 0.003 985 02 −0.000 179 818
−0.000 344 249 −0.000 179 818 0.009 244 67




Body


0

0
0


 0.6


 −0.5225

−7.080 19 × 10−18

−0.096 875





 0.003 683 59 1.754 73 × 10−18 −0.044 2188

1.754 73 × 10−18 0.318 62 9.099 95 × 10−19

−0.044 2188 9.099 95 × 10−19 0.317 811




Propulsion


0

0
0


 0.3


 −0.04

−8.881 12 × 10−19

−0.038 8889





 0.000 259 259 7.080 46 × 10−20 −0.001 555 56

7.080 46 × 10−20 0.001 897 67 −1.480 89 ×10−21

−0.001 555 56 −1.480 89 × 10−21 0.001 897 67




Technical load


−0.15

0
0


 0.9


 −0.1

−2.699 81 × 10−18

−0.058 3333





0.000 583 333 1.144 × 10−19 −0.005 833 33

1.144 × 10−19 0.011 355 −3.533 34 × 10−20

−0.005 833 33 −3.533 34 × 10−20 0.011 355




Whole glider


0

0
0


 3.6


 −0.429 336

−0.000 179 262
−0.054 6229





 0.752 483 −0.000 164 927 −0.078 8293

−3.442 49 × 10−05 1.000 59 0.000 924 467
−0.085 4511 −0.000 398 502 1.741 49




Table B1. Rules of three controllers generating flights in different directions relative to the wind. Relatively small parameter changes entail
quite different behaviours, as described in section 3.3.

Manual controller Controller for 8◦

Fuzzy sets
z is high, Ramp bounds 5.0 → 13.0 0.654 010 → 9.801 226
z is low, Ramp bounds 2.0 → 9.0 2.523 452 → 12.672 154

Rules
z is high, E = −0.6 + 0.006(ψ + 180) + 0.01θ −0.595 588 + 0.003 959(ψ + 180) + 0.008 705θ
z is high, G = −1.0 + 0.006(ψ + 180) + 0.01ϕ −2.334 902 + 0.000 483(ψ + 180) + 0.006 289ϕ
z is high, A = −1.0 + 0.006(ψ + 180) + 0.007ϕ −1.149 783 + 0.005 537(ψ + 180) + 0.012 901ϕ
z is low, E = −0.8 + 0.005(ψ + 180) + 0.02θ −1.730 784 + 0.000 289(ψ + 180) + 0.016 000θ
z is low, G = 0.0 + 0.006(ψ + 180) + 0.01ϕ 0.074 608 + 0.007 348(ψ + 180) + 0.009 041ϕ
z is low, A = 0.0 + 0.006(ψ + 180) + 0.007ϕ 0.001 825 + 0.010 158(ψ + 180) + 0.007 893ϕ

Controller for 30◦ Controller for 53◦

Fuzzy sets
z is high, Ramp bounds 3.983 407 → 19.475 286 3.036 179 → 9.232 050
z is low, Ramp bounds 1.514 679 → 9.579 008 2.521 118 → 7.275 177

Rules
z is high, E = −0.595 588 + 0.004 847(ψ + 180) + 0.008 689θ −0.598 565 + 0.011 557(ψ + 180) + 0.012 849θ
z is high, G = −1.748 078 + 0.004 470(ψ + 180) + 0.009 806ϕ −0.886 981 + 0.006 102(ψ + 180) + 0.007 703ϕ
z is high, A = −0.986 498 + 0.009 999(ψ + 180) + 0.005 711ϕ −1.135 517 + 0.014 454(ψ + 180) + 0.009 268ϕ
z is low, E = −0.748 618 + −0.001 014(ψ + 180) + 0.018 740θ −0.736 545 + 0.003 373(ψ + 180) + 0.025 652θ
z is low, G = −0.004 074 + 0.005 250(ψ + 180) + 0.008 782ϕ −0.000 016 + 0.006 232(ψ + 180) + 0.010 888ϕ
z is low, A = −0.000 089 + 0.006 423(ψ + 180) + 0.007 393ϕ 0.000 988 + 0.013 196(ψ + 180) + 0.014 100ϕ
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