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Abstract. This paper describes fast and accurate calibration-
free adaptive saccade control of a four-degrees-of-freedom
binocular camera-head by means of Dynamic Cell Structures
(DCS). The approach has been inspired by biology because
primates face a similar problem and there is strong evidence
that they have solved it in a similar way, i.e., by error feed-
back learning of an inverse model. Yet the emphasis of this
article is not on detailed biological modeling but on how
incremental growth of our artificial neural network model
up to a prespecified precision results in very small networks
suitable for real-time saccade control. Error-feedback-based
training of this network proceeds in two phases. In the first
phase we use a crude model of the cameras and the kinemat-
ics of the head to learn the topology of the input manifold
together with a rough approximation of the control function
off-line. In contrast to, for example, Kohonen-type adap-
tation rules, the distribution of neural units minimizes the
control error and does not merely mimic the input proba-
bility density. In the second phase, the operating phase, the
linear output units of the network continue to adapt on-line.
Besides our TRC binocular camera-head we use a Datacube
image processing system and a Stäubli R90 robot arm for
automated training in the second phase. It will be demon-
strated that the controller successfully corrects errors in the
model and rapidly adapts to changing parameters.

1 Introduction

Saccades are fast eye movements used by animals to change
fixation from one point in the visual field to another. In the
context of our binocular camera-head we refer to saccades as
fast eyeand head movements that serve the same purpose,
i.e., rapid change of fixation. Since the emphasis is on rapid-
ity and accuracy, pure feedback control is not the optimal
choice for either animals or robots because of long delays
and transient effects associated with the feedback loops. For
example, in the case of human eye movements of up to
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1000 deg/s and a delay for visual feedback of about 200
ms, there is no time for visual feedback to guide the eye to
its final position (Carpenter 1988). The human saccade con-
trol system must therefore calculate the pattern of muscle
activation in advance for each target position on the retina
(Carpenter 1988) – in other words it must have solved the
inverse kinematics1 problem (Dean et al. 1991).

According to an idea first put forward by Kawato et
al. (1987) and Miyamoto et al. (1988), the inverse kine-
matics can be learned by error feedback, i.e., by using an
error signal proportional to an error in target coordinates as
training feedback for biological or artificial neural networks.
In addition to there being strong neurobiological evidence
that error feedback is also the way monkeys and humans
learn and maintain saccadic accuracy (Dean et al. 1994),
Kawato has successfully applied this principle to a variety
of robotic tasks, including trajectory control of industrial
robots (Kawato 1990).

Error feedback learning for saccade control of a sim-
ulated (in contrast to an electromechanically or, synony-
mously, physically realized) camera-head with conventional
artificial neural net (ANN) architectures has been systemat-
ically studied by Dean et al. (1991). Mayhew et al. (1992)
report implementation of a layered control system for a
four-degrees-of-freedom stereo camera-head utilizing their
Parametrized Interpolating Look-Up Table (PILUT) archi-
tecture.

Inspired by Dean et al. (1991) we have chosen a simi-
lar approach to adaptive saccade control but selected a lo-
cally linear approximation scheme based on Dynamical Cell
Structures (DCS) (Bruske et al. 1995) for control of our
(physical) binocular camera-head since this type of ANN
ideally meets the demands of the control task: First, the cal-
culation of the controller output has to be as fast as possible
to allow control at video rate. Incrementally growing DCS
meet this requirement by (i) growing the network only as
large as necessary to meet a prespecified precision and, fur-
thermore, by (ii) utilizing only a small subset of its neural
units for output calculation. Second, in both the human and

1 In robotics, the term ‘inverse kinematics’ of, for example, a robot arm
refers to the problem of determining the joint angles required to move the
end effector to a certain (cartesian) position.
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our artificial vision system the angular rotations around the
horizontal viewing, pan and tilt axes (cf. Fig. 1) required to
fixate are a linear function of the retinalx andy coordinates
of the target only in the case of a restricted field of view (so
that the difference between a planar and a spherical retina is
not important and the small angle approximation holds) and
a small initial tilt angle. With increasing tilt the optical axes
of the cameras and the pan axis are no longer perpendicu-
lar and the nonlinearity of the control law increases. Hence
when using an approximation scheme based on locally linear
approximation, the density of neural units should be high in
regions of the input space with a high tilt component. Con-
trary to Kohonen-type networks or PILUT, growing DCS
are able to achieve this by allocating new neural units in
regions of the input space where the approximation error is
high. This is exactly the case for regions of the input space
deviating from the linear control law.

Finally, due to physical constraints phase space trajecto-
ries of multidimensional systems such as the camera-head
system usually lie on submanifolds that locally may be
of very much lower intrinsic dimensionality than the input
space of the system. DCS just attempt a similar reduction in
dimensionality in that they place units in the input subman-
ifold and adapt their lateral connection structure towards an
optimally topology-preserving map that is utilized for im-
proved adaptation and approximation.

The remainder of this paper is organized as follows. In
Sect. 2 we will first relate our adaptive saccade controller
to saccade control in humans and other primates, i.e., ex-
plain the biological motivation. We will then become more
technical and in Sect. 3 have a closer look at the kinemat-
ics and inverse kinematics for calibration-dependent model-
based control of the camera-head. Insights from this analysis
are used in the design of the DCS-based adaptive saccade
controller in Sect. 5 as well as for the discussion of the ex-
perimental results in Sect. 6. DCS are briefly introduced in
Sect. 4. In Sect. 7 we relate the paper to previous work and
in Sect. 8 we provide a final summary.

2 Relation to primate saccade control

Our work bears relation to biology in three respects. First,
we try to solve a similar problem under similar constraints
that the human visual system has already solved, i.e., the
problem of fast and accurate saccade control. Second, we use
error feedback learning for solving the problem – a learning
mechanism well grounded in neurobiology (Kawato 1995)
and probably used for maintaining accurate saccade control
in the human visual system (Dean et al. 1994). Finally, we
make use of artificial neural networks, which are biologically
inspired as well. We now discuss these issues in more detail.

2.1 Requirements for saccades in artificial
and biological systems

In biology, saccades denote the fast movements of the eyes
that are used to bring a new part of the visual field to the
foveal region (Carpenter 1988). They have to be as accurate
as possible straight away since correctional saccades take ad-
ditional time. Because they are so fast, external feedback is

inappropriate for control because of the long latency of such
feedback loops. Since this is exactly the problem we are try-
ing to solve for our artificial camera-head, we have termed it
‘saccade control problem’, although we additionally control
the panχ and tilt φ of the head, (cf. Fig. 1). Interestingly,
similar restrictions apply to both the biological and our arti-
ficial system: Human eyes as well as our cameras can move
with a velocity of up to 1000 deg/s. In our artificial vision
system the delay for visual feedback is about 40 ms, due
to image processing and data transfer among various buses.
The human visual system has a latency of at least 120 ms
(Carpenter 1988). A major challenge for both human sac-
cades and control of our cameras is that the required change
in eye position depends not only on the visual (retinal) co-
ordinates of the target but also on the initial head and eye
position, if the optical axes of the cameras are not initially
perpendicular to both the pan and tilt axes.

2.2 Adaptive saccade control by error feedback learning

Although human saccades are generally thought to bepre-
programmedor ballistic (Carpenter 1988), this only means
that once initiated they cannot be modified in flight. It does
not answer the question whether the necessary activation
patterns are genetically preprogrammed or learned. Indeed,
there are a number of lines of evidence pointing to the im-
portance of learning (Dean et al. 1994). Human infants, for
example, produce hypometric saccades that become accurate
during the first year (Aslin 1987); adults adapt to the effects
of eye muscle weakening (Zee and Optican 1985); and sub-
jects under laboratory conditions come to anticipate the sur-
reptitious movement of a visual target during the saccade to
it (Deubel et al. 1986). Based on these and similar findings
Dean et al. put forward their model of brainstem-cerebellar
interactions for learning and maintaining saccadic accuracy
based on Kawato’s principle of feedback error learning. The
model is similar to Kawato’s models for adaptive modifi-
cation of the vestibulo-ocular reflex and ocular-following
response (Kawato 1995). We will now briefly review this
model of human adaptive saccade control and then relate it
to our artificial saccade control system.

As pointed out by Dean et al., typical models of sac-
cade control contain a variant of the internal feedback pulse-
generator proposed by Robinson (1975). Such a simplified
model (Dean et al. 1994) comprises a simplefeedback con-
troller converting target coordinates in visual coordinates
to a desired change in eye position. This desired change in
eye position is then passed to apulse or burst generatorthat
outputs a velocity command to the oculomotor neurons. An
internal feedback loop with a resettable integratorintegrates
the pulses (velocity command) of the burst generator and
subtracts this estimate of the current eye displacement from
the desired change in eye position (hence stopping the burst
generator when input is below a threshold). Finally, afur-
ther integratoralso integrates the velocity signal to provide
a steady-state position command to the motor neurons that
is necessary to maintain the new eye position. While such
a model can account for a large amount of data about the
behavior and physiology of the saccadic control system in
monkeys and humans (Dean et al. 1994), it cannot learn to
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make accurate saccades nor does it include information con-
cerning the eye position at the start of the saccade. Dean
et al. therefore extended this model by anaptive controller
that receives input from both the feedback controller (about
the visual coordinates of the target) and the oculomotor neu-
rons (about the initial eye position). The output of this addi-
tional controller alters the gain in the internal feedback loop,
thereby controlling saccade generation. Utilizing error feed-
back learning, the controller is adapted by an error signal
also emanating from the feedback controller.

While it has been suggested that the burst generator is
comprised of groups of neurons in midbrain and pons, and
it is assumed that the functionality of the simple feedback
controller is located in the superior colliculus, Dean et al.
have hypothesized that the adaptive controller is located in
the posterior vermis. In their model, grounded on anatom-
ical and physiological evidence, the information about the
visual coordinates of the target is first projected to the con-
tralateral nucleus recticularis tegmenti pontis which in turn is
connected with the posterior vermis through a heavy mossy
fiber projection. The source of the signal about the initial eye
position is not entirely clear, but the authors quote evidence
that it is the nucleus prepositus hypoglossi that projects to
the posterior vermis via mossy fibers. Finally, the error sig-
nal is thought to be provided by climbing fibers that arise
from a specific subregion of the inferior olive, which itself
is the target of a projection from the superior colliculus.

In contrast to Dean et al. (1994), our adaptive saccade
controller is not intended to imitate or model biology in
the first place but to control a particular electromechani-
cal device – the TRC camera head. Nevertheless our con-
troller has a number of structural parallels with its biologi-
cal counterpart, mainly the assumed overall structure com-
posed of a simple feedback controller and an adaptive in-
verse model, the latter being adapted by an error signal pro-
vided by the feedback controller (cf. Fig. 4). Also there is a
strict separation between the visual coordinates of the target
and the initial eye and head positions. As in the biologi-
cal model, the simple feedback controller is provided with
the visual target information only, whereas the adaptive in-
verse model receives information about the initial positions
as well. The main functional difference compared with the
biological model is that our adaptive controller does not con-
trol saccades indirectly by modifying an internal feedback
loop but rather directly by generating the input for the in-
ternal controllers of the camera-head.

2.3 Biological plausibility of DCS

In spite of being initially inspired by biology, the standard
ANN models [Multi-Layer Perceptron (MLP) and Radial Ba-
sis Function (RBF) networks] certainly have little to do with
biological neural networks, at least on the neuroanatomi-
cal level. They represent nonlinear function approximators,
which turn out to work very well, both in theory and in
practice. ANN are capable of learning and hence can be
considered models of higher-level brain functions associated
with cognitive capabilities such as learning and generaliza-
tion that are closely related to function approximation. The
DCS we have used in this paper are RBF networks with an

additional lateral connection structure formed by Hebbian
learning. Poggio (1990) has outlined his ‘theory of how the
brain might work’ by means of HyperBF2 networks. On
a functional level he suggests thatthe brain uses modules
for multivariate function approximation as basic components
of several of its information processing subsystems and that
these modules are released by HyperBF networks. He also in-
dicates how these networks can be implemented in terms of
biologically plausible mechanisms and circuitry: the cerebel-
lum is proposed to consist of a set of approximation modules,
the granule cells to correspond to the basis functions that re-
ceive input via mossy fibers, the Purkinje cells to correspond
to the output units that sum the weighted activities of the ba-
sis functions and the climbing fibers to provide a teacher sig-
nal. Within this theory the adaptive saccade controller would
be implemented by a HyperBF network, similar to our DCS-
based adaptive controller. Martinetz et al. (1994) comment
on a possible analogy between their Topology Representing
Networks (TRNs) and the architecture of biological neural
networks, which would enable the network to represent the
neighborhood and topological relations between features just
as in DCS3. Yet to our knowledge neurobiological evidence
for this analogy is lacking.

3 The camera-head

Let us now introduce our binocular camera system, the TRC4

BiSight. We first describe the imaging geometry of the sys-
tem and then report results concerning the inverse kinematics
for model-based control. Finally, we discuss the implications
of the inverse kinematics for calibration-free adaptive con-
trol. Besides the binocular case we also treat the simpler
monocular case.

3.1 The TRC BiSight camera system

The TRC BiSight (Fig. 1) has four mechanical degrees of
freedom, given by the pan angleχ, the tilt angleφ and the
horizontal viewing directions (h.v.d.s)θ1 andθr for the left
and right camera, respectively. The maximum control values
are±160◦ for pan,±90◦ for tilt and ±45◦ for the h.v.d.s.
The precision is±0.0225◦ for pan and tilt and±0.006◦ for
the h.v.d.s. The CCD cameras are mounted on the tilt axes
and the length of the stereo baseline is 25 cm. Each cam-
era has three optical degrees of freedom: the zoom (11.5–
69 mm), the focus (50cm–∞) and the aperture. The image
size of each camera is 5122 pixels.

3.2 Geometry of the camera-head

For the configuration of the TRC BiSight, the mapping from
a point p̄w = (xw, yw, zw, 1) in homogeneous world coordi-
nates to a point ¯pc = (xc, yc, zc, 1) in camera coordinates is

2 Poggio’s HyperBFs are just generalized RBFs using elliptical instead
of radially symmetrical weighting functions.

3 According to the definition of TRN (Martinetz et al. 1994), DCS can
be classified as TRNs with a RBF associated with each node in the graph
of the TRN.

4 Transitions Research Corporation, Danbury, Connecticut, USA.
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Fig. 1. a The TRC BiSight binocular head.b Diagram of
the TRC head

given by

p̄cl,r = T−1
θl,r

T−1
φ T−1

χ p̄w (1)

l andr indicating the left and the right camera, respectively,
with transformation matrices

Tχ =

 cosχ 0 − sinχ 0
0 1 0 0

sinχ 0 cosχ 0
0 0 0 1

 ,

Tφ =

 1 0 0 0
0 cosφ − sinφ 0
0 sinφ cosφ 0
0 0 0 1

 , (2)

Tθl =

 cosθl 0 sinθl −b/2
0 1 0 0

− sinθl 0 cosθl 0
0 0 0 1


andTθr analogous toTθl (changed index and reversed sign
of translation and rotation). Here, we assume the origin of the
world coordinate system to be at the point of intersection of
the pan and tilt axes, and the origins of the camera coordinate
systems to be at the point of intersection of the tilt axis with
the corresponding view axis.

The mapping from a point ¯pc = (xc, yc, zc, 1) in camera
coordinates to image coordinates ¯pi = (xi, yi, 1) is given by

p̄i = Pc

(
1
zc
p̄c

)
,with Pc =

[
αxc 0 x0c 0
0 αyc y0c 0
0 0 1 0

]
(3)

The parametersαxc, αyc, x0c, y0c are theintrinsic parame-
ters of the cameras and have to be carefully determined by
a calibration procedure as described in, for example, Tsai
(1986) or Faugeras (1993).

3.3 Inverse kinematics

Knowing the geometry one can solve the inverse kinematics
for both the monocular and the binocular system. In order to
make the solution of the inverse problem unambiguous we
apply the following constraints:

– for the monocular system we require the pan axis to be
fixed,

– for the binocular system we require the two cameras to
verge symmetrically, i.e.,θl = θr = θl,r

Solving (1)–(3) for the required angles (necessary to fix-
ate the target given the current angles and retinal coordi-

nates) is now straightforward5 and yields the model-based
inverse kinematics for monocular and binocular fixation, re-
spectively:

ω̄∗ = (φ∗, θ∗) = fmonocular
direct (x, y, θ, φ)

(monocular case) (4)

ω̄∗ = (χ∗, φ∗, θ∗l,r) = fbinocular
direct (xl, yl, xr, yr, θl,r, φ, χ)

(binocular case) (5)

It is, however, advantageous not to calculate the new angles
ω̄∗ directly because (after some manipulations) it turns out
that the change in angles∆ω̄ is independent of the tilt in the
monocular case and of the pan in the binocular case. The
inverse kinematics now take the form

∆ω̄ = (∆φ,∆θ) = fmonocular
direct (x, y, θ)

(monocular case) (6)

∆ω̄ = (∆χ,∆φ,∆θl,r) = fbinocular
direct (xl, yl, xr, yr, θl,r, φ)

(binocular case) (7)

3.4 Discussion

Having derived a model of the inverse kinematics of the
camera-head, one can use it for model-based saccade control.
However, one must bear in mind the central assumptions
behind this:

– tilt and view axes intersect at the optical center,
– the CCD chip of the camera has been accurately placed

by the manufacturer,
– the base length is known exactly, and
– the intrinsic parameters have been determined with high

accuracy.

The first assumption is valid only if the system is well
manufactured. If tilt and view axes did not intersect at the
optical center the complexity of the model would increase
significantly. The second assumption is only approximately
valid, since the CCD chips are usually slightly rotated around
the optical axis of the cameras. The model could, however,
be extended to cope with these rotations at the cost of in-
troducing yet another set of intrinsic parameters. Finally,
to determine the intrinsic parameters (and perhaps the base
length as well) one must employ a carefully designed cali-
bration method. Yet any change in the intrinsic parameters
(e.g., by zooming), change of the base length or wear and

5 Since the rather lengthy formulae for the following functions and their
derivation with help of the MAPLE tool set do not contribute to the under-
standing of the article and our emphasis is on adaptive rather than model-
based control, they have been omitted here.
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Fig. 2. Increasing nonlinearity of the computed map-
ping from image coordinates to changes in tilt and
horizontal viewing direction (h.v.d.), (xi, yi)|φ,θ →
(∆φ,∆θ), for varying initial h.v.d.θ and constant tilt
φ = 0◦. The figures show the mapping of the retinal
(xi, yi) grid to the control values (∆φ,∆θ) for θ = 0◦
(top left), θ = 20◦ (top right), θ = 40◦ (bottom left)
andθ = 60◦ (bottom right)

tear of the internal controllers of the camera-head requires a
new calibration.

Hence even in the presence of a perfect model, cali-
bration-free adaptive control can be advantageous, provided
the adaptive controller is flexible enough to reach the re-
quired precision. The analysis of the system then sheds
some light on the kind of controller one should employ.
In the monocular case the controller need not know the pre-
vious tilt angle,φ (6). Furthermore, the inverse model has
a strong linear component for small initial h.v.d., i.e., when
the optical axis of the camera is nearly perpendicular to
the tilt axis. This is illustrated in Fig. 2, showing that for
small initial h.v.d.θ the mapping of (xi, yi, θ) to (∆φ,∆θ)
is nearly linear (top left) while becoming increasingly non-
linear with increasing initial h.v.d. Analysis of the binocular
case reveals independence of pan (7), and the mapping from
(xl, yl, xr, yr, θl,r, φ) to (∆χ,∆φ,∆θl,r) here becomes in-
creasingly nonlinear with respect to both initial h.v.d. and
tilt. The nonlinear dependency on the tilt is due to the fact
that the optical axes of the cameras are no longer perpen-
dicular to the pan axes for tilt angles different from zero.
An adaptive controller can exploit this, and our DCS-based
controller does so: it learns a locally linear approximation of
the actual inverse kinematics and will place more nodes in
regions of increasing nonlinearity. The latter is an intrinsic
property of DCS and, as we demonstrate in Sect. 6, leads
to a distribution of nodes aimed at minimizing the approx-
imation error (and not just reflecting the input probability
density, as, e.g., in the case of the Kohonen feature map).

4 Dynamic Cell Structures

DCS, as introduced in Bruske et al. (1995), denote a class of
approximation schemes that are based on RBFs and attempt

to learn and utilize optimally topology preserving feature
maps (OTPMs).6

The architectural characteristics of DCS (Fig. 3) are

– one hidden layer of RBF units,
– a dynamic lateral connection structure between these

units, and
– a layer of (usually linear) output units.

Training algorithms for DCS rest on adapting the lateral con-
nection structure towards an OTPM by employing a com-
petitive Hebbian learning rule and activating and adapting
RBF units only in the neighborhood of the current stimulus,
where ‘neighborhood’ relates to the simultaneously learned
topology.

We use a normalized RBF approximation scheme and
hence the output of a DCS network calculates as7

ȳ(x̄) =

∑
i∈Nh+(bmux̄) ō

irbf((x̄− c̄i)2)∑
i∈Nh+(bmux̄) rbf((x̄− c̄i)2)

(8)

where rbf((x̄− c̄i)2) denotes an RBF with center ¯ci. The vec-
tors ōi can be thought of as output weight vectors attached
to each rbf unit. The activation function rbf:R+ → R+

is strictly monotonically decreasing with rbf(0) = 1.0 and
rbf(∞) = 0. In the experiments reported in this article the
activation function has been realized by a rational function,
rbf(x) = 1/(1 +σx2), with fixed σ. With the lateral connec-
tion structure between the RBF units being represented by
an adjacency matrixC, the neighborhood Nh+(j) of neural
unit j is defined as the unit itself together with its direct
topological neighbors Nh(j):

6 In contrast to the introduction in Bruske et al. (1995), we here no
longer require DCS to learn a perfectly topology-preserving map, since
perfect topology preservation as defined in Martinetz et al. (1994) can only
be checked for if prior knowledge of the data distribution, i.e., knowledge
of the ‘density’ condition in theorem 3 in Martinetz et al. (1994), is given,
which is not the case here.

7 In the following we denote vectors by ¯x, components of a vector by
x̄i and enumerations of vectors by ¯xi.



438

Fig. 3. Dynamic cell structures (DCS) are Radial Basis Function
(RBF) networks (left) plus lateral connection structure between the
RBF units attempting to build an optimally topology preserving map
(OTPM) by competitive Hebbian learning (right; closely modified
from Fig. 5d of Martinetz et al. 1994)

Nh+(j) = Nh(j) ∪ j = {i|Cij /= 0, 1≤ i ≤ N} ∪ j (9)

and the best matching unit bmux̄ is given by

(c̄bmu− x̄)2 ≤ (c̄i − x̄)2, (1≤ i ≤ N ) (10)

The adjacency matrixC is adapted by a competitive Hebbian
learning rule

∆Cij =

{
1 : yi · yj ≥ yk · yr∀(1≤ k, r ≤ N )
0 : otherwise (11)

with yi = rbf((x̄ − c̄i)2). Given the training setT (either
explicitly in the form of a number of samples or implicitly
via a density function on the input space) the lateral connec-
tion structure converges to the OTPM of the set of centers
S = {c̄i, . . . , c̄N} with probability 1, with the OTPM ofS
givenT defined as the graph (adjacency matrixC) with

Cij /= 0⇔ ∃x ∈ T ∀1≤ k ≤ N, k /∈ {i, j} :

max{(x̄− c̄i)2, (x̄− c̄j)2} ≤ (x̄− c̄k)2 (12)

The importance (and naming) of OTPMs stems from the
fact that they are optimally topology preserving in the sense
of the topographic function introduced in Villmann et al.
(1994) for measuring the degree of topology preservation.
Compared with the usual RBF approximation, learning and
exploiting the topology of the input space not only speeds
up the computation of the output value (because only a small
number of neural units need to be evaluated in each step)
but can also improve approximation quality (because in the
usual RBF scheme units whose centers have small Euclidean
distance to the stimulus but large intra-manifold distance to
the point of projection of the stimulus onto the manifold can
impair the approximation fidelity).

In order to adapt the output vectors ¯oi, we employ gra-
dient descent on an error functionE(ȳ), (see Sect. 5.2.1 for
gradient-based output layer adaptation in conjunction with
error feedback learning). The centers ¯ci can be adapted by
gradient descent as well but may alternatively be trained by
a Kohonen-type learning rule utilizing the lateral connection
structure. Both these center adaptation rules are investigated
in the context of our application in Sect. 5.2.2.

Growing DCS are realized by inserting additional RBF
units in regions of the input space where the approximation
performance is unsatisfactory (hence increasing the resolu-
tion in this region). This is achieved by attaching an addi-
tional error variable (resource value) to each neural unit that

monitors the performance of the network when this unit is
involved in output calculation. In Sect. 5.2.3 we will show
how the fixation error is used to update the error variables
and to control growth of the network for adaptive saccade
control. As already mentioned, and central to our applica-
tion, theerror-driven insertionof new units has the advan-
tage that the distribution of neural units attempts to minimize
the error (and does not merely reflect the input probability
density, as would be the case with a Kohonen-type rule).
See also Fritzke (1995a) for more on incremental growth of
RBF networks utilizing resource values.

While error-driven refinement of approximation schemes
works very well in practice, it is an open question whether
biological systems use similar mechanisms. All that is known
is that in the adult brain no new neurons are available.

Finally, we want to point out the close connection of
RBF networks and DCS with Sugeno-type fuzzy logic con-
trollers (for details see Bruske et al. 1996a). Here, the main
idea is that each RBF node with its attached output vector
may be viewed as a Sugeno-type fuzzy rule, and (8) just
implements the Sugeno fuzzy inference rule. This allows in-
corporation of prior knowledge as well as analysis of DCS
in terms of fuzzy logic.

5 DCS for adaptive saccade control

Having investigated the kinematics of our camera-head and
outlined the ideas behind DCS, we now describe our feed-
back error learning scheme for adaptive saccade control. The
actual training of the system will proceed in two stages. First,
we use a crude simulation of the cameras and the kinemat-
ics of the head to learn saccade control up to a predefined
precision off-line. In the second phase, the operating phase,
we continue to adapt the output layer of the DCS network
on-line to cope with deviations of the physical camera-head
from the simulated one and deviations due to changing pa-
rameters. The first phase could be on-line as well but simu-
lation has the advantage that training takes less time (no real
head movement) and that, in the second phase, the physi-
cal system is under reasonable control right from the start.
Stopping center adaptation in the operating phase also avoids
potential instabilities that may arise due to the sensitivity of
the center adaptation rules to a possibly changing, nonsta-
tionary input probability density in the operating phase [cf.
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Fig. 4. DCS-based adaptive saccade control. The DCS network as-
sociates an input vector of angles and retinal coordinates ( ¯ω, p̄)
with a (Jacobian) matrixA, which is then multiplied by the retinal
coordinate vector ¯p to yield a change in angles∆ω̄. The control
value is the sum of this change plus the old angles,∆ω̄ + ω̄. After
fixation, the retinal coordinates of the target point are transformed
into a further change in angles∆ω̄p by the proportional feedback
controller. This serves as an error signal for the DCS network and
can also be used for a correctional saccade

Ritter and Schulten (1986) for an analysis of the center dis-
tribution as a function of the input probability density in the
context of the Kohonen rule].

5.1 Controller output calculation

Exploiting the strong linear component of the saccade con-
trol problem (see Sect. 3.4) we do not directly associate the
input vector of retinal coordinates and angles ¯u = (p̄, ω̄) with
an output vector but with a (Jacobian) matrixA. This matrix
is then multiplied by the vector of retinal coordinates ¯p to
yield the change in angles. Hence we approximate the in-
verse kinematics with a locally linear mapping, interpolating
between the linear transformsAi attached to the nodes of
our DCS network. See Fig. 4 for illustration.

More specifically, for the binocular case we use a five-
dimensional input vector, ¯u = (xl, yl, xr, θl,r, φ), which we
associate with a 3× 3 (Jacobian) matrixA, the output of
the DCS network. Here,xl, yl, xr denote the retinal (image)
coordinates of the target on the left and right camera,θl,r
are the h.v.d.s of the left and right camera andφ is the tilt
angle of the camera-head. The output of the controller∆ω̄
is calculated as

∆ω̄ = (∆χ,∆φ,∆θl,r) = Ap̄ (13)

here∆χ,∆φ,∆θl,r denote the changes (rotations) in pan, tilt
and h.v.d.s necessary to fixate the target, and ¯p = (xl, yl, xr)
is the retinal coordinate vector. Recall that because of sym-
metrical vergenceθl = θr and that∆ω̄ does not depend on
χ. Further, we exploit the fact that the four retinal coordi-
natesxl, yl, xr, yr are not independent8 to excludeyr from
both the input ¯u and the retinal coordinate vector ¯p.

In the monocular case, we use a three-dimensional input
vector, ū = (x, y, θ), which we associate with a 2× 2 ma-
trix A. With retinal coordinates ¯p = (x, y) the output of the
controller then calculates as

∆ω̄ = (∆φ,∆θ1) = Ap̄ (14)

Utilizing a DCS network, the matrixA is computed as a
normalized weighted sum of the matricesAi attached to the
rbf units of the DCS network,

A =
∑

i∈Nh+(bmu)

Aihi with hi =
rbf((ū− c̄i)2)∑

j∈Nh+(bmu) rbf((ū− c̄j)2)
(15)

8 The target point is uniquely determined as the intersection of the two
viewing rays defined by (xl, yl) and (xr, yr), respectively. It is, however,
uniquely determined also as the intersection of the viewing plane defined
by xr and the viewing ray defined by (xl, yl).

5.2 Feedback error learning with DCS

After fixation we use the output of a simple proportional
feedback controller to adapt the parameters of the DCS net-
work. This is the principle of feedback error learning, which
is illustrated in Fig. 5 and served as the design principle of
our adaptive saccade controller (Fig. 4). Advantageous prop-
erties of feedback error learning of inverse kinematics are
(i) that in contrast to direct inverse modeling, feedback er-
ror learning does not suffer from the problem that the global
optimal solution (with respect to the error function used for
training) is not necessarily a correct inverse model [see Jor-
dan and Rumelhart (1992) for the ‘convexity problem’ as an
example] and (ii) simplicity, i.e., in contrast to, for exam-
ple, forward-and-inverse modeling no additional backprop-
agation through a forward model is necessary. A detailed
discussion of this and related learning paradigms is beyond
the scope of this article, and the reader is referred to Kawato
(1990) and Jordan and Rumelhart (1992).

The drawback of error feedback learning is that difficult
problems such as the inverse kinematics of a robot arm with
redundant degrees of freedom may require quite sophisti-
cated feedback controllers, yet in our case of symmetric fix-
ation with a binocular camera-head, a proportional feedback
controller suffices. Its output∆ω̄p = (∆χp, ∆φp, ∆θpl,r)
is proportional to the mean target’s retinalx-coordinates,
the left camera’sy-coordinate and the difference in thex-
coordinates after fixation:

(∆χp, ∆φp, ∆θpl,r) = (k1(xl + xr), k2y1, k3(xl − xr)) (16)

with k1, . . . , k3 the gain factors of the proportional con-
troller. If fixation is perfect,∆ω̄p will be the null vector.

For the monocular case, the output of the feedback con-
troller is∆ω̄p = (∆φp, ∆θp) and the components are simply
proportional to they-coordinate and thex-coordinates of the
camera after fixation:

(∆φp, ∆θp) = (k1y, k2x) (17)

Note that for both the binocular and the monocular case the
control laws (16) and (17) suffice to fixate. The reason for
training an additional inverse model is just to accelerate fix-
ation, i.e., to fixate in one step without relying on feedback.

5.2.1 Output layer adaptation.In order to adapt the output
layer of our DCS network, i.e., the matricesAi, we have to
translate the feedback error∆ω̄p into a difference between
matrices. The feedback error∆ω̄p indicates that
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Fig. 5. Feedback error learning

∆ω̄∗ = ∆ω̄ + ∆ω̄p = Ap̄ + ∆ω̄p (18)

is a better output of the controller. This output would have
been obtained by a matrixA∗ with

A∗ = A + ∆ω̄p
p̄T

‖p̄‖2
(19)

as is easily checked by multiplying (19) by ¯p. Using A∗
as the desired output of our DCS network we can define a
difference matrix

∆A = A∗ −A = ∆ω̄p
p̄T

‖p̄‖2
(20)

and can use the followingα-LMS (least mean square) rule
for adapting the output layer, with 0< α < 1:

∆Ai = α

(
∆ω̄p

p̄T

‖p̄‖2

)
hi, i ∈ Nh+(bmu) (21)

implementing a gradient descent on (∆A)2. We setα = 0.7
in all the following experiments.9

5.2.2 Center adaptation.For center adaptation we report ex-
periments with two different learning rules introduced in the
following. An evaluation of these learning rules in the con-
text of our learning tasks is provided in Sect. 6.1.

– The well-known Kohonen-type learning rule (Kohonen
1987) used, for example, in Fritzke (1995a) and Bruske
et al. (1995):

∆c̄i = εi(ū− c̄i), i ∈ Nh+(bmu) (22)

– A gradient-modulated learning rule with centers restricted
to moving in the direction of the negative gradient:10

∆c̄i =

 εi(ū− c̄i):
∂

∂rbfi
(∆A)2 > 0

0 : otherwise
, i ∈ Nh+(bmu)

(23)

with
9 The parameter setting in this and the following adaptation rules is not

critical, i.e., small variations lead to qualitatively similar behavior. Yet a
good trade-off between speed of adaption (α → 1) and stability (α → 0)
has to be found by experimentation.

10 Since the gradient of a RBF with respect to the center is always in
the direction of the difference between stimulus and center vector, i.e.,
∇c̄rbf((ū − c̄)2) ∼ −(ū − c̄), (23) does indeed adapt the center vector in
the direction of the negative gradient of (∆A)2.

∂

∂rbfi
(∆A)2 = ∇A(∆A)2 · ∂

∂rbfi
A

=
∑

kl

(
∆ω̄p

p̄T

‖p̄‖2

)
kl

(
Ai −A∑

j∈Nh+(bmu) rbfj

)
kl

(24)

In the above learning rules, theεi denote learning constants.
We haveεi = εbmu = 0.05 for the bmu andεi = εNh = 0.006
for the direct neighbors of the bmu.

The Kohonen-type learning rule (22) is simpler but has
the disadvantage that the distribution of neural units does
not depend on the output error of the network but on the
input probabilitiy density only. Although frequently used in
regression, classification and control tasks it is a very poor
learning rule for those tasks because of this missing error
sensitivity. Its use can only be justified if the approxima-
tion error is correlated with input probability density (e.g.,
uniform approximation error and uniform input probability
density) or if there is an additional mechanism taking care of
an error-dependent distribution of units (like our error-driven
insertion strategy: see below).

A gradient-based center adaptation rule promises to be
the more appropriate choice because it aims directly at mini-
mizing the expected output error. The additional error-driven
insertion strategy of neural units helps to alleviate the well-
known problem of local minima for this learning rule (by
‘globally’ inserting units where the local approximation er-
ror is largest). Furthermore, gradient calculation is fast in
DCS networks even in implementations on serial hardware
because it is restricted to the bmu and its neighbors. Yet
in conjunction with RBF networks, gradient descent is fre-
quently observed to move neural units out of the input mani-
fold (since a local optimum may be reached in this way), and
the same is true for DCS. This is the motivation for consid-
ering the gradient-modulated learning rule (23), where the
stimulus attracts the unit just as in the case of the Kohonen
rule but only if the movement is along the negative gradi-
ent. Hence units stay in the input manifold and only move
in directions of decreasing error.

5.2.3 Node insertion.A new unit is inserted whenever the
resource value of the bmu,rbmu, and the current fixation
error,efix, exceed the prespecified precisionδ:11

rbmu > δ and efix > δ (25)

11 In our case, we usually requireδ = 2.5 pixels, which is 0.5% of the
image size of the cameras (512× 512 pixels).
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In case of insertion, the resource of the bmu is set to zero,
or else it is updated using a floating average rule:

rbmu =

{
0 : insertion

βefix + (1− β)rbmu: otherwise
(26)

Note that this insertion rule is (i) purely local and (ii) purely
error driven. Making insertion depend on the best-matching
unit’s resource, which is a local average of the fixation er-
ror, the procedure becomes less sensitive to noise than by
relying only on efix. Setting the resource to zero after in-
sertion and choosing a small averaging constantβ we avoid
over-frequent insertions in the neighborhood of a single unit.

The output matrixAnew of a newly inserted unit is initial-
ized withAbmu, and its center is initialized with the current
stimulus, ¯cnew = ū. Finally, it is (mutually) connected with
the bmu. Between successive insertions we require at least
n logn training steps without insertion,12 n being the cur-
rent number of neural units, to allow the lateral connection
structure of the DCS network to build an OTPM. Due to
this strategy we need a relatively large number of trials for
meeting high precision demands. However, in the off-line
phase emphasis is on as small a number of neural units and
as good an OTPM as possible, since these will no longer be
adapted in the on-line phase. Training in the off-line phase
stops when the averaged fixation error falls below the pre-
specified precision.

5.2.4 Topology learning.Since units are allowed to move,
the Hebbian learning rule (11) must be modified to allow
‘forgetting’ of neighborhood relations (lateral connections)
that no longer exist. This can easily be achieved by extend-
ing (11) with a decay term. However, care has to be taken to
avoid ‘dead neurons’, i.e., units that are disconnected from
the remaining ones and are utilized no further. Our solution
is a nonsymmetric Hebbian learning rule similar to that pro-
posed in Ahrns et al. (1995) and detailed in Bruske et al.
(1996b).

5.3 Off-line training phase

In off-line training we use a (crude) model13 of the TRC
BiSight (and not the system itself) to calculate the new reti-
nal coordinates of the target after applying the controller
output. Input vectors are generated randomly. The only con-
straints are that the h.v.d.θl and tilt φ are restricted to an
interval of interest and that the retinal coordinatesxl, yl, xr
may not exceed the field of view of the cameras.

Note that we do error feedback learning (i.e. no super-
vised training) in the off-line phase just as in the following
on-line phase. In particular, we do not need the inverse kine-
matics. Our off-line training phase could actually be on-line
as well (with the TRC BiSight instead of the model); the
only reasons to keep it off-line are to accelerate training14

12 This heuristic is motivated by theoretical results concerning the time
complexity of building OTPMs as given in Martinetz et al. (1994).

13 The model is given by (1) and (3) with a coarse estimate of the camera
parameters.

14 Training on 20 000 target points needs less than 5 min off-line com-
pared with 5.5 h on-line (with 1 s for each movement of the robot arm for
generating the next target point).

and to have reasonable control in the working phase right
from the start.

5.4 On-line training in the operating phase

In the operating phase we continue to adapt the matrices
Ai in the output layer by error feedback, just as in the off-
line phase. However, we no longer grow the network nor do
we adapt the centers or the lateral connection structure any
longer.

Targets for fixation are generated by randomly moving
our Sẗaubli R90 robot arm in its workspace with a light
source attached to its gripper (Fig. 6). Relying on our Dat-
acube image processing system, we can calculate the retinal
coordinates of the target with respect to the two cameras of
our TRC binocular camera-head (Fig. 6a) at video rate. The
controller output as calculated according to (13) and (15) is
then applied to fixate the target, and the output of the pro-
portional controller is used for error feedback learning. The
latter is also used for a correctional saccade.

6 Experimental results

In this section we will first investigate the two learning rules
introduced in Sect. 5.2.2 for center adaptation. We do this
in the context of analytically more simple monocular fixa-
tion (see Sect. 3). We then proceed with the better learning
rule (the gradient-modulated rule) and apply it for learning
binocular fixation. We further demonstrate the effect of on-
line training and give an example of how the system adapts
to changing camera parameters.

Throughout all the following experiments we use the
same set of learning parameters for the DCS network.15 In-
puts have been normalized to the interval [−1, 1]. The fixa-
tion error is calculated as the mean of the retinal coordinates,
i.e.,

efix =
|x| + |y|

2
(monocular case)

and (27)

efix =
|xl| + |xr| + |yl|

3
(binocular case)

Only one retinaly-coordinate is evaluated for error calcu-
lation in the binocular case since they-coordinates cannot
be controlled independently. There is only one common tilt
joint and in the case of fixation with symmetric vergence
yl = yr.

6.1 Monocular adaptive fixation

Taking the monocular case as a test bed we compare the
two learning rules of Sect. 5.2.2, Kohonen-type and gradient-
modulated center adaptation. Targets were generated with a
uniform h.v.d. distribution in [−40◦, 40◦] and covered the

15 Parameters areα = 0.7 (output layer learning rate),σ = 1.0 (width
of basis functions),β = 0.03 (resource averaging constant),εbmu = 0.05,
εNh = 0.006 (center adaptation rates).
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Fig. 6a,b.On-line training with the robot
arm. a Setup for on-line training.b The
Sẗaubli R90 robot arm

Table 1. Averaged number of training stepsn and number of allocated
neural unitsN with standard deviations for the 441 two learning rules for
different precisionsδ

δ Kohonen-type Gradient-based
learning rule learning rule

3.5 pixels n : 10542± 460 n : 8184± 1017
N : 65± 1.3 N : 57± 3.7

2.9 pixels n : 30879± 1855 n : 17988± 2890
N : 105± 2.9 N : 82± 5.9

2.5 pixels n : 65788± 6252 n : 39216± 2827
N : 147± 6.0 N : 117± 4.0

whole 512×512 pixel retina of the camera. Table 1 shows the
number of training steps and the number of allocated neural
units for the two learning rules as a function of the required
precision (fixation error). Both the number of training steps
and the number of neural units are averaged over ten runs.
The gradient-modulated rule consistently outperforms the
Kohonen-type rule, i.e., it allocates significantly less units
and takes nearly half the training time of the Kohonen-type
rule. Not surprisingly, the table also implies that the number
of units needed to reach a required precision grows super-
linearly. Figure 7 shows the distribution of neural units as a
function of initial h.v.d. The first row shows the frequency
of center insertion as a function of the h.v.d. while the sec-
ond row shows the number of neural units as a function of
the h.v.d. after training. The histograms are averaged over
ten runs.

The learning rules show the same qualitative behavior:
although targets have been generated with a uniform distri-
bution with respect to the h.v.d., far more neural units are
inserted in regions of large h.v.d. than in regions of small
h.v.d. (first row). This is in accordance with our expectation
based on the analysis of the inverse kinematics for monoc-
ular fixation in Sect. 3.3. There we saw that the control law
becomes increasingly nonlinear the larger the h.v.d. Hence
approximation with a local linear model becomes more diffi-
cult for large h.v.d.s, and in order to reach the same precision
for all h.v.d.s, the error-driven insertion strategy allocates
more units for large angles.

The error-driven distribution of centers is maintained
by the learning rules (second row). However, since the
Kohonen-type rule follows the probability density, this rule
would eventually generate a uniform distribution of units (if
center adaptation continued but no new units were inserted).
It is the missing error-sensitivity of this rule that is respon-

sible for its non-optimal performance (Table 1). A closer
look at the distribution for the Kohonen rule after training
(second row in Fig. 7) actually indicates that this flattening
is already in effect for small and medium angles. Only the
higher insertion rate for large h.v.d.s and the border effect
(moving centers from the border towards the center) have
prevented the peaks at large angles from flattening.

6.2 Binocular adaptive fixation

The gradient-modulated learning rule turned out to be the
more appropriate for binocular asymmetric vergence too,
and the results below all refer to this learning rule. The
workspace for the off-line phase wasφ ∈ [−30◦, 30◦] for
tilt and θl,r ∈ [0◦, 10◦] for the h.v.d.s. Targets were gen-
erated with a uniform distribution with respect to the tilt
and covered both camera images. The workspace used for
training in the off-line phase includes the workspace for on-
line training, which wasφ ∈ [−14◦, 2◦], θl,r ∈ [2◦, 4◦] and
χ ∈ [−4◦, 9◦]. The latter reflects the work space of our robot
arm.

For the very high precision of 0.5% (2.5 pixels) we need
only 19155± 1340 training saccades and 84± 2.6 neural
units. Again, the numbers denote averages and standard de-
viations over ten runs. For one of these runs, Fig. 8 shows
the course of the pixel error (averaged) and the number of
neural units in the DCS network versus the number of train-
ing steps. On reaching this precision after 18000 simulated
saccades only 82 neural units have been inserted into the
network. We could reach this precision with fewer training
steps but since we want as few neural units and as good
an OTPM as possible, we invest in the off-line phase. After
all, the whole off-line phase takes only 3 min for 20 000
saccades on a Sparc 4 workstation. And the very reasonable
accuracy of 1% (5 pixels) is reached after 3500 steps with
fewer than 40 neural units.

Figure 9 shows the averaged distribution of neural units
depending on the tilt angle, at time of insertion (left) and
at the end of training (right). Again this distribution is in
accordance with expectation: insertion frequency and density
of neural units increase with increasing tilt and hence with
increasing nonlinearity, in spite of the uniform training target
distribution with respect to the tilt.

Now we use the pretrained controller for saccade con-
trol of the physical TRC binocular camera-head. As demon-
strated in Fig. 10 the error at the start of the operating phase
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Fig. 7. Distribution of centers projected on the
h.v.d.θ[◦] for the two learning rules.Upper row:
at the time of insertion.Lower row: at the end of
the off-line learning phase

Fig. 8. Average binocular fixation error in pixels
and the number of neutral units in the DCS net-
work versus the number of training steps in the
off-line training phase

is about 7 pixels (1.5%), which is due to deviations of the
model from the physical system. However, due to on-line
learning by error feedback the error drops to 2.0 pixels
within 1000 saccades.

Finally we performed an experiment similar to that de-
scribed in Henson (1978). In Henson’s (monocular) experi-
ment subjects were fitted with a contact lens that made them
artificially myopic. This myopia was then neutralized by

a conventional spectacle lens. Yet because the contactlens
moves with the eye, the subject experiences a prismatic ef-
fect, based toward the center of the lens for the eye, at all
positions of gaze other than that through the optical center of
the spectacle. Henson has reported that after 14 min (about
250 saccades) the oculomotor system had managed to adapt
to the new conditions and the saccades showed almost the
same distribution of undershoots, overshoots and normomet-
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Fig. 9. Distribution of centers projected on
the tilt angleθ (deg) for learning binocular
fixation with the gradient-modulated learning
rules: At the time of insertion (left) and at the
end of training (right)

Fig. 10.Average fixation error in pixels
versus the number of training steps in
the operating phase

ric movements as before wearing the contactlens spectacle
combination.

To demonstrate on-line adaptivity to altered visual input
in our binocular system, we increased the zoom of one of the
cameras as reflected by the peak in the error plot in Fig. 10.
Increasing the zoom increases the focal length and hence
the intrinsic parametersαxc andαyc in (3) as well asx0c
andy0c if the latter differ from zero. Due to magnification,
smaller changes in angles are now required to compensate
the same retinal coordinates. The controller is able to adapt
to the new parameter setting of the cameras within the next
600 saccades (Fig. 10).

7 Related work

The adaptive saccade controller based on DCS is related to
the work of Dean et al. (1991) and Mayhew et al. (1992), and
this is the first topic to be discussed here. We continue with
the relation of our DCS architecture to similar architectures
and finally provide a brief overview of other active vision
projects involving binocular camera-heads.

7.1 Adaptive saccade control of a binocular camera-head
with ANN

The most closely related approach to adaptive saccade con-
trol of a binocular camera-head with artificial neural net-
works is that of Dean et al. (1991) and Mayhew et al. (1992).

Dean et al. (1991) tested several types of networks for sac-
cade control of asimulatedfour-degrees-of-freedom camera-
head. These included a linear associator, a Multi-Layer Per-
ceptron (MLP), Albus’ Cerebellar Model Arithmetic Com-
puter (CMAC) and two-layered hierarchical networks, the
last consisting of a linear net plus a CMAC or MLP trained
to compensate the error of the linear net. They used super-
vised as well as feedback error learning and directly associ-
ated a seven-dimensional input vector (including pan) with
changes in pan, tilt and h.v.d. Dean et al. noted a strong
linear component, which was their motivation to use the
two-layered networks.16 One of their conclusions was thatit
would be useful to have a net that could adjust its own gran-
ularity and networks that could betrained incrementally– a
major issue in this paper.

Interestingly, the weight analysis of their MLP networks
revealed very small weights from pan input-units but large
from tilt input-units. In light of the inverse kinematics of
binocular fixation this can be well explained – the controller
output indeed does not depend on the pan.

Mayhew et al. (1992) discussed adaptive saccade control
as an application of their PILUT architecture. No perfor-
mance results were given, yet the PILUT bears similarity to
our approach: a first layer acts as a relatively coarsely coded
indexing network (comparable to our hidden layer of RBF

16 For their best networks (the two-layered ones), Dean et al. (1991)
reported fixation errors of 5 pixels with simulated 2562 pixel camera images.
In a similar workspace and in similar training time our DCS controller
reaches 2.5 pixel accuracy on 5122 pixel camera images.
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units) that blends local piecewise linear approximations car-
ried out in the second layer. However, they did not report
attempts to incrementally grow the indexing layer nor did
the PILUT learn the topology of the input manifold.

In a more recent article, Zahn et al. (1996) reported on
supervised training of a monocular camera system to gener-
ate time-optimal saccades. The interesting point about this
work is that an MLP was trained to learn directly the appro-
priate acceleration and deceleration times for fixating a tar-
get point with maximum torque values (bang-bang control).
This therefore made unnecessary the additional controller
that translates changes in gaze direction (the output of our
as well as Dean’s saccade controller) into a corresponding
torque profile.

7.2 Network architecture

Concerning the characteristics of our DCS networks, DCS as
introduced in Sect. 4 are closely related to Fritzke’s Growing
Cell Structures (GCS; Fritzke 1995a) and Martinetz’ Topol-
ogy Representing Networks (TRN; Martinetz et al. 1994). In
fact, DCS can be regarded as merging GCS with TRN (for
a detailed discussion see Bruske et al. 1995). Independently
of our work, Fritzke has further developed his GCS and cre-
ated his Growing Neural Gas (GNG), which is similar to our
DCS (Fritzke 1995b).

7.3 Relation to other active vision systems

There are a growing number of different research groups
within the field of active vision that use binocular vision
systems. However, emphasis here is usually not on adaptivity
and learning but on better and more robust estimation of
depth, motion, shape, etc., and hence they have employed
standard (model-based) calibration.

As one of the first, Abbot et al. (1988) elaborated on im-
proved surface reconstruction by combining the mechanical
and optical degrees of freedom of an active vision system.
Later, Krotkov (1989) combined stereo with vergence and
depth from focus for more robust depth estimation. Pahla-
van et al. (1994) and Uhlin et al. (1994) investigated the
potential of active stereo systems for scene exploration by
dynamic fixation and attentive vision on a broader scale, and
these groups share an interest in real-time applications for
motion and depth estimation with our own research group.
The work of Daniilidis et al. (1996) and Hansen et al. (1996)
represents first steps towards a repertoire of oculomotor be-
haviors for vision-based reactive real-time navigation.

8 Conclusion

Utilizing a DCS network for learning calibration-free sac-
cade control from error feedback we started where previous
work (Dean et al. 1991) ended. By incrementally growing
the network dup to the size where it meets a prespecified
accuracy level we tried to utilize as few neural units as pos-
sible to achieve the accuracy level. Since only a minor frac-
tion of these units is involved in calculating the output of

the DCS network, the generation of a controller output is
very fast (even on conventional hardware) and suitable for
real-time saccade control. By virtue of building optimally
topology-preserving maps, the centers of the neural (RBF)
units and the lateral connection structure are restricted to
the relevant regions of the input space. Different learning
rules have been tested for center adaptation, most success-
fully the gradient-modulated one. The density of neural units
was demonstrated to be high in regions of the input space
where they are actually needed, i.e., in regions where the
required sensory-motor mapping is nonlinear and thus dif-
ficult to approximate by the locally linear model. Insight
into the inverse kinematics helped to reduce the dimension
of the input space and to design the DCS-based controller
architecture.

The saccade controller has been successfully demon-
strated to learn saccade control with high precision and to
adapt to changing parameters on a physical four-degrees-of-
freedom binocular camera-head.
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