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Abstract— Locating gradient sources and tracking them over
time has important applications to environmental monitoring
and studies of the ecosystem. We present an approach, inspired
by bacterial chemotaxis, for robots to navigate to sources using
gradient measurements and a simple actuation strategy (biasing
a random walk). Extensive simulations show the efficacy of
the approach in varied conditions including multiple sources,
dissipative sources, and noisy sensors and actuators. We also
show how such an approach could be used for boundary finding.
We validate our approach by testing it on a small robot (the
robomote) in a phototaxis experiment. A comparison of our
approach with gradient descent shows that while gradient descent
is faster, our approach is better suited for boundary coverage,
and performs better in the presence of multiple and dissipative
sources.

I. INTRODUCTION

Several phenomena in nature induce gradients in their en-
vironment. For example, a fire induces a temperature gradient
in its vicinity; an oil spill induces a concentration gradient
of oil in the water etc. Detection, seeking and tracking such
phenomena in-situ has received some attention recently [1],
[2], [3]. The ability to autonomously detect, locate and track
such phenomena (the source of the induced gradient) would
give scientists a tool to monitor and study ecosystems at an
unprecedented level of detail. Typical gradients of interest to
scientists studying the ecosystem include temperature, light,
salinity, mineral concentration, pH, etc. These problems are
difficult because of the time-varying nature of the source,
the dynamics of the environment, a multiplicity of (possibly
interacting) sources, and finally, a paucity of sensing.

Motivated by these applications and challenges, we are in-
terested in the development of simple, robust, energy efficient
and cost-effective techniques which could be used in-situ to
locate source phenomena of interest to scientists (for ex., the
detection of a mineral pollutant in seawater). In this paper we
focus on a 2D version of this problem, and propose a simple
strategy for a mobile robot (or multiple robots) to navigate
to such a source using gradient information and extremely
rudimentary actuation. Our strategy is inspired by the studies
of taxis in bacteria [4].

Previous approaches to location and tracking of gradient
sources include spiral surge [1], gradient seek [5], sensor
arrays [6], swarm intelligence [7]. These approaches are good
for application in nearly static environments. Most of these
approaches have difficulties tracking sources that are small,

weak, mobile or sources whose intensity varies with time. The
gradient seeking strategies are susceptible to local minima and
plateaus. In the presence of multiple sources they are able to
locate and proceed to the closest source enacting a greedy
solution.

Another related area is the detection of dynamically chang-
ing gradient source boundaries in-situ in a distributed manner
[5], [6], [8]. This process involves locating the periphery of
the source, a small region which has the sharpest gradient
in a region close to the source. A brute force technique is
to compute the gradient at every point in the search space,
but such a technique is not efficient in terms of energy, time
requirements and the amount of processing involved.

In this paper, we present a novel technique based on biased
random walk [9] for the detection, seeking and tracking of
gradient inducing source phenomena. Our approach is inspired
by the way bacteria detect, locate and track nutrient sources in
nature [10]. We begin by a discussion of the characteristics of
bacterial motion and how it can be adapted and applied to the
problem at hand. In section III we describe the simulation
platform we created to evaluate our strategy along with a
discussion of the results obtained from simulations. Section IV
presents an implementation of our approach on the Robomote
robot platform and a discussion of the results obtained and
their applicability. In section V, we present a comparison
between the behavior of a gradient descent strategy and the
behavior of a biased random walk model. This is followed by
our conclusions and a brief comment on future work we plan
to pursue.

II. BACTERIAL MOTION

A. Biased Random Walk as a result of Chemotaxis

Nature presents us with a wide variety of simple biological
models which have evolved and refined over time. These
models help in sustaining the flora and fauna on our planet and
maintaining the ecological balance in diverse habitats. Bacte-
rial motion [10] and its response to the presence of chemical
concentration gradients called chemotaxis (or chemokinesis)
have been well studied [4], [11], [12]. The response to a
chemical stimulus in their vicinity helps bacteria find sources
of nutrients which are essential for their survival. Chemotaxis
is also observed in various other species of animals for varied
purposes including colony formation, predator avoidance and
breeding ground location [10].



Bacteria sense chemical concentration using receptors. They
are able to detect temporal and spatial changes in chemical
concentration based on the fraction of receptors occupied at
successive time intervals. An increase in the fraction of occu-
pied receptors is called a positive gradient while a decrease
is called a negative gradient. A chemical whose concentration
gradient attracts the bacterial cells is called a chemo-attractant.

Bacteria produce motion by the movement of their flagel-
lum [13]. A counter clockwise flagellar rotation results in a
smooth swim motion in a straight line in a particular direction
(we call this a run) while a clockwise rotation of the flagellum
causes the bacterium to randomly reorient itself in a new
direction (we call this a tumble), which is the direction for
the next run. Motion alternates between these two stages (run
and tumble).

The duration of the run (which is related to the mean
free path) is dependent on the concentration gradient that is
sensed in the vicinity of the bacterial cell. In the absence of
a gradient, the run length is independent of the direction of
motion and the bacterium executes a random walk. In the
presence of a positive gradient, the frequency of tumbling is
reduced resulting in a longer run length [11]. The presence of
a negative gradient does not have any effect on the tumbling
frequency. This change of tumbling frequency in response to
concentration gradient results in chemotaxis, allowing bacteria
to move towards sources of nutrients. Informally, chemotaxis
is a biased random walk.

B. A Robotic Implementation

Based on the description of bacterial motion presented in
section II-A, it is clear that a strategy based on biased random
walk can be used to locate and track gradient sources. This
biologically-inspired algorithm can be implemented on a group
of robots with simple sensing and actuation. The strategy of
such a bacteria-like robot can be summarized as “sense and
move”. A robotic node executing a biased random walk has
very small requirements in terms of memory since only the last
sensor reading needs to be stored. The processing requirements
are minimal since the only processing required is comparison
between successive sensor readings (gradient computation).
Only a minimal amount of motion control is required to hold
the heading of the robot in a particular direction for a particular
duration of time (depending on bias levels).

III. SIMULATION EXPERIMENTS

A. Methodology

To validate our ideas and explore the possible implications
of a bacterial motion-based approach for locating and tracking
gradient sources and their boundaries, we designed a simula-
tion platform.

We created a model of the world as a uniform two dimen-
sional grid of dimension 2000 * 2000 Units (Fig. 1). We
chose this size for our model because this would help us
generate areas of very low/negligible gradient concentrations
within the grid. We initialize one or more sources of gradient
(Si) at randomly chosen positions in the grid. The intensity
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SIMULATION GRID SETUP

(or gradient concentration) at any point in the grid due to
these sources was modeled to follow an inverse square law
distribution given by

Intensity(x, y) =
1

K

m∑

i=0

qi

r2

i

(1)

Equation (1) gives the intensity that can be sensed at a
point (x, y) on the grid in the presence of m gradient sources,
qi is the intensity of the source Si, K is a constant of
proportionality and ri is the distance between the grid point
(x, y) and the center of source Si.

All our simulations considered a set of 100 robots deployed
in the grid. The deployment was either random (using the
values derived from a uniform distribution over the grid
region) or based on the requirements of the simulation. At each
time step each of these robots could either move to one of its
8 neighboring grid points or change its direction of motion or
stay at its position if it had reached the gradient source.

We simulated a biased random walk with a Mean Free Path
(MFP) of 10 units, i.e., under the absence of a concentration
gradient, each robot would move 10 units of distance along the
grid in a particular direction before tumbling and changing its
direction of motion randomly. However, if the robot senses a
positive change in gradient, it decreases its tumbling frequency
thus increasing the run-length resulting in a biased random
walk (Fig. 2(b)). The typical bias value we used in our
simulations is 10% of the MFP which is similar to the bias
values observed in nature for bacterial motion [10].

We performed another set of simulations where the intensity
of the source varied over time. The change in intensity could
be attributed to a variety of reasons such as inherent nature of
the source to dissipate its energy over time, occlusion of the
source, consumption of the source (for ex., a nutrient source
being consumed by bacteria over time). The intensity of the
source (Si) at any time t is given by
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PURE RANDOM WALK VS BIASED RANDOM WALK

0 1 2 3 4 5

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

MFP=10 Units

A
ve

ra
ge

 d
is

pl
ac

em
en

t f
ro

m
 in

iti
al

 p
os

iti
on

 −
>

Time −>

No Bias

10% Bias

20% Bias

30% Bias

40% Bias

0 1 2 3 4 5

x 10
4

0

100

200

300

400

500

600

700

800

900

1000
MFP=10 Units

A
ve

ra
ge

 d
is

ta
nc

e 
fr

om
 S

ou
rc

e 
−>

Time −>

No Bias

10% Bias

20% Bias

30% Bias

40% Bias
0 1 2 3 4 5

x 10
4

0

10

20

30

40

50

60

70

80

90

100

MFP=10 Units

P
er

ce
nt

ag
e 

of
 n

od
es

 a
t S

ou
rc

e 
−>

Time −>

No Bias

10% Bias

20% Bias

30% Bias

40% Bias

Fig. 3
THE EFFECTS OF VARYING BIAS. THE LARGER THE BIAS, THE QUICKER THE CONVERGENCE. THE DATA ARE VISUALIZED USING THREE METRICS: A.

ROBOT DISPLACEMENT VS. TIME (LEFT), B. DISTANCE BETWEEN ROBOT AND SOURCE VS. TIME (MIDDLE), AND C. PERCENTAGE OF ROBOTS AT SOURCE

VS. TIME (RIGHT).

qi(t) = (qi(0)e
−k1t) − k2

t∑

j=0

Nij (2)

where qi(0) is the initial intensity of source Si, k1 and k2

are constants whose values are set based on the type of source
we are trying to model, Nij is the number of robots at source
Si depleting its energy at time instant j. The first term models
the decrease in intensity due to the energy dissipated by the
source over time while the second term models the decrease
in source intensity due to consumption by the robots near it.

The results we present in sections III-B and V represent
average values obtained over 104 trials to filter out the effects
of noise and outliers.

B. Simulation Results

Our simulations modeled the biased random walk strategy
under a wide variety of simulation models including various
gradient setup schemes (decaying vs. constant source, linear
vs. exponentially decaying gradients with distance) and robot
deployment strategies. In our trials, once a robot reaches a

particular gradient source, it stays there as long as the source
remains sufficiently active (i.e., intensity remains above some
threshold value). The gradient source is modeled as a circular
disc of radius 5 units. We designed a set of metrics which
would help understand and evaluate our approach.

Our first metric is the average displacement of the robot
from its initial position. We monitor this over time as the
simulation proceeds. The second metric we use is the average
distance of the robot from the source over time.

Fig. 3 presents results from simulations performed to study
the effect of varying bias levels on the speed of convergence
of the robots towards a single source. As can be seen in Fig. 3,
even when no bias is present, the robots do move and explore
a lot of space. As expected, in the absence of a bias, the
robots wander around without showing any particular progress
towards the source. An introduction of a very small amount of
bias of the order of 10% results in a rapid movement of robots
towards the source of the gradient. The exploration phenomena
was observed to be independent of initialization conditions as
long as the other simulation parameters (bias etc.) remained
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Fig. 4
MULTIPLE SOURCES. A.ROBOT DISPLACEMENT VS. TIME, B.DISTANCE FROM SOURCE VS. TIME, C.PERCENTAGE OF ROBOTS AT SOURCE 1 & 2, AND

D.INTENSITY OF SOURCE 1 & 2

the same.
Fig. 4 presents the results from another set of simulations

where we initialize a single gradient source at the start of
simulation (t = 0s). A second source is introduced at t = 5000s.
Both sources are modeled as dissipative energy sources, with
dissipation rates proportional to the number of robots that have
reached them respectively.

Another feature to observe is how well the robots did in
terms of reaching an individual gradient source, how fast and
how many of them reached which source? This gives us a third
metric to evaluate our model wherein we monitor the average
number of robots reaching a particular source over time. This
metric is more meaningful when plotted alongside the source
intensity variations. Figs. 3(c) and, 4(c) show how the robots
reach the source as the simulation proceeds in time. They also
demonstrate how the appearance of a second source attracts
some of the robots and pulls them away from the first source.
As the intensity of the source starts decreasing, some of the
robots start moving away from it and once it disappears, all
the robots which were near it start executing a random walk
in search of other sources and move away from it. The results
from the multiple source experiment (Fig. 4) also demonstrate
that this technique does not show any preferential movement
towards a particular source based on its time of appearance.

We performed another set of simulations with multiple
sources having different intensities and the results were as we
expected. All the sources were tracked. The weaker sources

got a comparatively smaller fraction of the robots because the
gradients they set up were very small, but on an average all
sources were well covered. Another set of simulations were
performed to study how the performance of the algorithm
varied in presence of linear, cubic and exponential gradients.
The results were similar since the decision to run or tumble
is governed by the sign of the change in gradient and not by
the magnitude of the change. After executing a run, the robot
essentially takes a new sensor reading and compares it with the
previous sensor reading taken before it started the current run.
The decision to tumble or continue in the same direction is
then based on the sign of the difference in the sensed gradient
values and does not depend on the absolute sensor readings.
This also makes the system tolerant to static sensor errors.

We performed another set of simulations introducing a
Gaussian error in the decision function itself. These errors
model the non-static sensor errors and actuation errors (i.e.,
motion of the robot might not be the same as the command
signal applied). Fig. 5 presents the results in the presence of
0%, 6%, 20% and 40% error. Even in the presence of 40%
error, the robots still converge to the gradient source.

Another set of simulations were performed to understand
how well the robots spread around a gradient source i.e., do
the robots reach a gradient source all at the same place? We
modeled a circular source with a diameter of 45 units and
studied the effect of deploying the robots randomly, uniformly
and at a single location in the grid at the start of the simulation.



Fig. 5
EFFECT OF INTRODUCTION OF ERRORS IN THE DECISION FUNCTION
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EFFECTIVENESS AT BOUNDARY DETECTION

Fig. 6 presents the result of initializing all the robots at a
single location at one corner of the grid. As can be seen,
the robots approach the source from all directions. Similar
results were obtained from random and uniform initial robot
deployments. A point to note here is that even if all the robots
were deployed in very close vicinity of the source, some spread
along the periphery of the source was achieved. The results
from irregularly shaped sources were also in agreement with
the above observations.

C. Discussion

From the above results we conclude that a strategy based on
biased random-walk implemented on a group of mobile robots
can effectively track multiple time-varying gradient sources at
the same time. Moreover, such a set of robots require very
minimal amount of controls to be developed. The only control
element is the change in the length of the run in response to
the sensed gradient change.

An analysis of our simulation results indicates that we
can trade bias for speed vs. efficiency. Higher bias values
accelerate the movement of the robots towards the source but
might not be good if the source is mobile or has a variable
intensity. Lower bias values result in longer response times for
the robots to reach the source but are more effective in tracking

weak, mobile and intensity-varying sources. Our results also
indicate that it is possible to determine a range of bias values
to track a gradient source with any desired source tracking
characteristics.

The source boundary detection results also highlight the
suitability of our approach to a set of applications where the
source dimensions are comparatively large and we need to
track its complete boundary (e.g. the boundary of an underwa-
ter plume or the boundary of an oil spill). For such applications
the algorithm should be able to achieve a sufficient spread of
robots along the entire boundary.

IV. EXPERIMENTS WITH THE ROBOMOTE ROBOT

Validation experiments were carried out on the Robomote
(Fig. 7(a)) test bed developed at the Robotic Embedded
Systems Lab at the University of Southern California. The
capabilities of this small, matchbox-sized, two-wheeled robo-
mote include moving along a straight line for a specified
duration and/or distance and the ability to turn in place by a
specified angle. For a more detailed description of the platform
the reader is referred to [14].

Mica-I motes developed by Crossbow were used to give
control commands to the robomote using TinyOS [15]. We
used two basic components move and rotate to provide control
commands to the robomote for performing a biased random
walk. A light source was placed at one end of the test bed to
generate a photo (light) gradient. A basic sensor board with
a photo sensor was mounted on the robomote (Fig. 7(b)) to
sense the photo gradient. The experimental setup can be seen
in Fig. 7(c). Color blobs were mounted on top of the robomote
to help detect its position on the test bed. The position of
the robomote was tracked using an overhead camera and a
tracker [16].

We positioned the robomote at a distance d (d = 40 cm, 80
cm, 120 cm) from the source at the start of the experiment
and tracked its position as it executed a biased random walk
on the test bed following the photo gradient. Each of the d
values constituted a circular arc on the table of radius d units
from the center of the light source.



Fig. 7
ROBOMOTE AND THE TESTBED

0 200 400 600 800
0

20

40

60

80

100

D
is

ta
nc

e 
fr

om
 S

ou
rc

e 
(in

 c
m

.) 
−>

Time elapsed (in sec.) −>

Robomote
Simulation

0 500 1000 1500
0

20

40

60

80

100

120

140

160

D
is

ta
nc

e 
fr

om
 S

ou
rc

e 
(in

 c
m

.) 
−>

Source 1
Source 2

Time elapsed (in sec.) −>

Fig. 8
ROBOT BEHAVIOR IN RESPONSE TO (A) SINGLE AND (B) MULTIPLE GRADIENT SOURCES

A fixed value for d still leaves the position of the robomote
on the arc and its initial heading as random variables which
can be either towards or away from the source. A small circular
arc of radius 5 cm around the source was considered as the
source radius. We were interested in measuring if the robomote
reaches the source and if so in how much time? The speed of
the robomote was set at 2 cm/s for the experiments. We chose
a MFP of 5 cm and a bias factor of 40%.

Once switched on at the distance d, the robomote starts off
by taking a sample using the photo sensor (Si). It starts moving
along a straight line in the direction of its current heading for
a distance and/or duration as specified in the random walk
parameter MFP (run). At this point it takes another photo
sensor reading and compares it with the previous reading from
the photo sensor. If it senses no change or a negative change in
gradient, it randomly chooses a new heading direction (θi) and
rotates in place to orient to that heading. If a positive change in
gradient was sensed, it continues its motion for an additional
distance specified by its bias value before randomly computing
the new heading and making a turn (tumble). In either case the
run and tumble cycle is repeated. The experiment terminates
when the robomote reaches the source.

We repeated the experiment 75 times for each of the d

values with random starting location and orientation of the
robomote along the arc and averaged our position readings
over the collected data sets. We believe this gave us a good
enough set to evaluate the effectiveness of our approach. The

graph for the metrics we proposed in the previous section can
be seen in Fig. 8(a). The results from the robomote platform
agree with our simulation results.

We repeated the experiment with two equal intensity sources
present at the same time at opposite corners of the test bed and
started the robomote at distances d (d = 25%, 50% (center)
and 75% position on the test bed) (Fig. 7(d)). Contrary to
the expectation that the robomote would have moved to the
closest source, we observed what we had expected, i.e., the
source where the robomote finally ended was independent of
the starting orientation and location of the robomote at the
start of the experiment.

With the same setup as the previous experiment (Fig. 7(d)),
we carried out another set of experiments. We started with
only one source switched on initially at t = 0s. At t = 180s
we switched on the second source which was located at the
other end of the test bed. This was followed by switching
off the first source completely at t = 435s. We repeated the
experiment for the different values of d (d = 25%, 50% (center)
and 75% position on the test bed). The results we obtained
on hardware platform (Fig. 8(b)) were in agreement with our
simulation results.

V. COMPARISON WITH GRADIENT DESCENT STRATEGY

We are trying to locate a gradient source by essentially
following gradients. An obvious question arises: why not just
use a simple gradient descent algorithm? In this section we



Fig. 9
COMPARISON OF GRADIENT DESCENT STRATEGY WITH BIASED RANDOM WALK IN PRESENCE OF A SINGLE SOURCE

compare the performance of our biased random walk approach
with a simple gradient descent algorithm.

We begin by presenting an evaluation of the performance
of the simple gradient descent strategy in simulation. We
use the same simulation framework that we developed in
section III-A. We simulated a gradient descent strategy with
a Mean Free Path (MFP) of 10 units, i.e., under the absence
of a positive concentration gradient in the current direction
of motion, the robot would move 10 units of distance along
the grid in that direction before tumbling and changing its
direction of motion randomly and then repeat the run and
tumble stages. However, if the robot sensed a positive change
in gradient, it continues to move in the direction it was moving,
for another MFP units, before checking for the gradient change
again.

The results from the simulation are presented in Fig. 9 along
with results for the biased random walk simulations (repeated
here for easier comparison). The results clearly indicate that
a simple gradient descent scheme performs better than our
biased random walk for small bias values. However, as the
bias levels are increased, the two become comparable.

Sources in nature seldom occur by themselves or without
interference from each other. In order to compare the two
techniques under more realistic conditions, we carried out
another set of simulations with multiple sources. We started
the simulation with a single source at one corner of the grid at
time t = 0s. At time t = 1500s. we initialized a second source
at the opposite corner of the grid and tracked the performance
of the gradient descent algorithm over time. At t = 10000s we
turned off the first source and continued tracking the motion
of the robots.

The results from the simulation are presented alongside
the results for biased random walk in Fig. 10. As can be
seen from the results, the gradient descent strategy performs
better than the biased random walk approach in the presence
of a single gradient source both in terms of the number of
robots which reach the source (Fig. 10(c)) as well as the time
taken by them to reach the source. With the introduction of a
second source, the gradient descent strategy keeps following

the first source and the number of robots at the first source
keeps increasing and very few robots reach the second source
(Fig. 10(d)). On the other hand, the results from the biased
random walk are quite impressive. Both gradient sources are
simultaneously tracked and receive a good share of the number
of robots reaching them. The introduction of more gradient
sources results in some robots tracking each one of them as
long as there are some available robots. Thus for the purpose
of tracking multiple gradient sources, our algorithm clearly
outperforms the gradient descent approach.

Our last set of simulations verifies the source coverage
obtained by the gradient descent algorithm. We initialized
all the robots at the same location on the grid. The gradient
descent algorithm terminated with all the robots on one quarter
of the source boundary (nearest their initial position), whereas
(as presented in the previous section), the biased random walk
approach resulted in a spread all around the source. From the
above set of results, clearly the biased random walk approach
we propose outperforms the simple gradient descent strategy
for the applications we consider.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an algorithm based on biased
random walk [9] for the detection, seeking and tracking of
gradient inducing source phenomena. Our approach is inspired
by the way bacteria detect, locate and track nutrient sources
in nature [10]. Through a wide set of simulation and exper-
imental work on robots, we demonstrated how our strategy
is well suited to varied conditions including multiple sources,
dissipative sources, and noisy sensors and actuators. We also
show how our approach could be used for boundary finding.
We validated our approach by testing it on a small robot
(the robomote) in a phototaxis experiment. A comparison of
our approach with gradient descent shows that while gradient
descent is faster for tracking a single source, our approach
performs better in the presence of multiple and dissipative
sources and is also better suited for boundary coverage.

Our algorithm is robust in the sense that it is guaranteed to
work as long as there is a gradient. The inherent randomness
in the algorithm prevents the robots from landing in a local



Fig. 10
COMPARISON OF GRADIENT DESCENT STRATEGY WITH BIASED RANDOM WALK IN PRESENCE OF MULTIPLE SOURCES

minimum. The algorithms insensitivity to inherent sensor
errors and limited tolerance to actuation errors makes it a
good choice for low-cost sensors. The algorithm is scalable
and ideal for implementation on very simple, low-cost robots.
Cost and scalability are the major issues for the applications
we outlined in section I.

In the future, we will carry out surface-water experiments
for detection and tracking of one or more dissipating color
dye sources. We will also extend our algorithm to perform
distributed data fusion of the data from multiple sensors on
the robot.
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