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Abstract—A  swarm  is  defined  as  a  set  of  two  or  more
independent homogeneous or heterogeneous agents acting in
a common environment, in a coherent fashion, and which
generates  emergent  behavior.  The  creation  of  artificial
swarms or robotic swarms has attracted many researchers
in the last two decades. Many studies have been undertaken
using practical  approaches to swarm construction such as
investigating  the  navigation  of  the swarm,  task  allocation
and  elementary  construction.  This  paper  examines
aggregations  that  emerge  from  three  different  movement
models of relatively simple agents. The agents only differ in
their maximum turning angle and their sensing range.
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I. INTRODUCTION

Aggregation patterns that can be observed in nature and
biology  have  always  been  of  great  fascination  to
researchers,  e.g.  flocks  of  birds,  schools  of  fish,  social
insects  foraging  and  attacking  etc. These  patterns  are
evident in countless other examples of animal and insect
migrating behaviors such as great herds of antelopes and
wildebeests thundering across the savannah, and Monarch
butterflies migrating south into  remote mountain tops in
central Mexico towards the end of  the summer season. In
all these cases, it is fascinating to observe how coordinated
and synchronized these natural group behaviors are.

It would be fair to think that animals, like birds and fish,
achieve these movement patterns by having leaders to keep
them organized, e.g. the bird at the front of the flock leads
and the others follow. On the contrary, most bird flocks and
fish schools are leaderless, in fact the movements of the
flocks  and  schools  are  determined by  the  instantaneous
decisions of individual birds or fish.  These may include
maintaining a fixed distance between local neighbors [1] or
the reaction to fluid flow around an individual [2].

Orderly  flock  patterns  arise  when  each  bird  follows
simple  rules  in  response  to  dynamic  interactions  with
neighbours in  the  flock.  Such  movements  are  a  prime
example of emergent behavior and self organization.

By  understanding  the  movement  model  of  biological
swarms, roboticists can develop and build more complex
organization mechanisms for large multi-robot systems.

A. Self-organization
The main feature of  self-organization is that a system's

organization or movement does not explicitly depend on
external control factors.  In other words, the  organization

emerges  solely  due  to  the  local  interactions  between
individuals and their environment [3]. 

The organization can evolve dynamically either in time
or space and can maintain some kind of stable form  or can
show transient phenomena. An example of such a system is
that of a colony of ants sorting eggs without any particular
ant knowing the sorting algorithm itself [4].

Many social insect societies exhibit interesting complex
behaviors  in  organizing themselves  to  perform  specific
activities such as foraging and nest building. Cooperation
amongst  individuals arises  through  an  indirect
communication mechanism, called stigmergy [5]  and by
interacting through their environment.

B. Emergence
Like the word Intelligence, the definition of Emergence

(or  Emergent  Behavior) has attracted some attention by
researchers. 

Taylor  [6]  asserts  that  the  emergent  properties  are
collections of units at a lower level of  organization and,
through their interaction, often give rise to properties that
are  not  the  mere  superposition  of  their  individual
contributions.

Steels  [7]  s  that  “emergent functionality means that a
function  is  not  achieved  directly  by  a  component  or
hierarchical  system of  components,  but  indirectly by the
interactions  of  more  primitive  components  among
themselves and with the world.”

Mataric  [8]  defines  emergent  behavior  for  swarm
intelligence as follows: emergent behaviors is apparent by
global states which are not explicitly programmed in, but it
results  from local  interactions amongst  individuals.  It  is
considered interesting based on some metric established by
the observer.

Despite  several  differences  in  the  definition  of
emergence,  one  common  theme  connects  all  these
definitions in  the AI (Artificial Intelligence) community,
i.e. emergent  behavior  occurs  as  a  result  of  local
interactions amongst individuals and between individuals
and their environment.

In  recent  times,  many  researchers   have  shown  an
increasing interest in building multi-robot systems or, on a
much larger scale, robot swarms.  Unlike other studies on
multi-robot systems in general, swarm robotics emphasizes
self-organization and  emergence  behavior  in  a  large
number  of  agents  promoting  scalability,  flexibility  and
robustness by only using limited local communication. This
also requires the use of relatively simple robots, equipped
with limited communication mechanisms, localized sensing
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capabilities  and  the  exploration  of  decentralized  control
strategies.

In this paper, we use the idea of flocking from [9][10]
and we add an artificial potential field (AFP) to the arena.
We  then  describe  the  simulation  procedures  and
methodology.  Finally,  we  present  our  results  and  offer
some conclusions.

II. SIMULATION SETUP

A. Working Arena
In this study, the NetLogo simulation tool has been used.

NetLogo was developed by Uri Wilensky in 1999 [10] as a
programmable  modeling  environment  for  simulating
natural and social phenomena. NetLogo is well suited for
modeling  time  dependent  complex  systems and  literally
allows users to give instructions to hundreds or thousands
of independent agents operating concurrently. This makes it
possible  to  explore  the  connection  between  micro-level
individual behavior and macro-level patterns that emerge
from the interactions of individuals.

The working arena in the simulation is based on patches.
In these simulations an arena size of 201 by 201 patches
was chosen. We then applied APF to attract all agents to
the center of the arena with a radius of 63 unit patches from
the  center,  as  shown  in  Fig.  1;  the  white  background
represents the area which is  not  affected by the applied
field.

B. Movement Models
In  designing  the  aggregation  behavior  of  artificial

swarms, several approaches have been proposed, which can
be simply divided into two classes: physicomimetics and
biomimetics [11].

Physicomimetics is a general description for engineering
systems which gain inspiration from physical systems such
as  fluid  flow  analyses,  Newtonian  analyses  and  kinetic
analyses. The research in Physicomimetics is focused on
swarm behaviors that are similar to that shown by solids,
liquids and gases [11]. As an example of Physicomimetics,
Spears and Gordon [12] showed how swarms of micro-air
vehicles (MAVs) are controlled and self organizes into a
hexagonal lattice, which create a distributed sensing grid
with a fixed spacing between MAVs [13].

 On the other hand, biomimetics is a general description
for engineering methods or systems that mimic biological

systems or systems found in nature. Biomimetics is also
known as bionics, biognosis, biomimicry and has a varied
field  of  application  from  business  studies  to  political
sciences.

In the field of swarm engineering, Reynolds was one of
the first to simulate behavioral control animation [9]. He
developed  a  system  to  model  flocking  behavior  and
coordinated movements seen in birds and fish in which he
named the creatures “boids”. The basic Reynolds' flocking
model is based on three simple steering behaviors, namely
Separation, Alignment and Cohesion, which describes how
an individual boid should change its heading or direction
and velocity based on the positions and velocities of its
nearby neighbors or flockmates.

Fig. 2 shows three basic strategies of Reynolds' flocking
rules.  On the left is the cohesion strategy where the red
boid feels the urge to steer towards the average position of
flockmates  in  its  vicinity,  resulting in  the  boids  staying
close to one another. The green boid in the center of Fig. 2
exhibits the separation strategy; this strategy is to ensure
that  the  boid  is  maintaining  a  safe  distance  from  its
flockmates and encourages the boid population to  avoid
crowding the neighborhood. Finally, the blue boid on the

Fig. 1. Working Arena with 300 agents

Fig. 2. Reynolds [9] primitive flocking rules; from left to right: Cohesion, Separation and  Alignment strategy.
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right demonstrates the alignment strategy which sometimes
is referred to as the  velocity matching strategy. This rule
encourages the boid to move with a similar heading and
velocity as its flockmates.

In this study, three different movement models, namely
fish-like, mosquito-like and firefly-like have been modeled.
These are governed by rules as represented in the flowchart
in Fig. 3.

The agent has been modeled so that each agent can sense
or “see” others within its neighbourhood in 360-degrees, as
shown in Fig. 4. The  difference between each movement
model consists of the  visibility  range and the  movement
span.

Visibility range is the variable where we define how far
each agent can see from its position; while the  movement
span is a set of maximum angles that are available for the
agent to change its direction either to the left or right for its
next movement. As shown in Table I, Visibility range and
movement span for the fish-like model have been set to 10
unit-patches and 10-degrees; for the mosquito-like model 7
unit-patches  and  45-degrees,  while  for  the  firefly-like
model they are 5 unit-patches and 90-degrees, respectively.

TABLE I.
VARIABLES FOR MOVEMENT MODELS

Movement model Movement span Visibility range

Fish-like 10 10

Mosquito-like 45 7

Firefly-like 90 5

Fig. 5 shows some sample trajectories for each model
after we apply the movement span. From Fig. 5 we can
clearly see the differences between the trajectories of each
movement model. Fig. 5(a) shows fish-like motion where
the movement is like fish motion with a calm turning angle.
Fish-like motion is useful for scanning large areas of the
arena in a short time period. Fig. 5(b) and Fig. 5(c) show
the  trajectories  of  the  mosquito-like  and  the  firefly-like
movement model,  respectively.  As we can see from the
trajectories, firefly-like motion allows the agent to move
around scanning in a small local area, and this can be useful
for searching for small objects in a small area, while the
mosquito-like movement appears to scan a wider area in
the arena as well as its own neighborhood area.

C. Simulation Methodology
For this study, Wilensky's [10] flocking model has been

adopted and adapted. We extended the model by adding an
APF originating from the center of arena as  defined by
equation (1). The strength of the field is subjected to the
patch's distance from the origin and the circular area of the
field is subject to a variable, fieldRadius, that is set to 63.

field ! "
1, distance! fieldRadius

fieldRadius
distance

, otherwise #
(1)

The number of agents in the simulations has been set to
300.  At  the  beginning  of  the  simulation,  agents  are
randomly distributed in the arena, which are represented as
small black dots as shown in the Fig. 1. As the simulation

starts, each agent goes into a wander phase if the agent is
outside the APF or a wander inside field phase if the agent
is inside the APF area, as shown in the flowchart in Fig. 3.
Each agent then examines the position where they were at;
if that particular position is affected by the APF, or having
field value of larger than one (field > 1), the agent is then
attracted to the field.

The agent  then looks around, within its visibility range,
for flockmates. If  any mate is found, the agent flocks with
the  flockmates,  otherwise  it   continues  roaming.  While
inside the  field, the aforementioned rules were used with
added attraction to the center of the field, so that agents did
not leave the field.

As we are extending Wilensky's model of flocking [10],
three more variables from the model needed to be assigned;
max-align-turn,  max-cohere-turn and  max-separate-turn.
These variables are the maximum angles that each agent
can  turn  through  during  the  alignment,  cohesion and

Fig. 4. Representation of an individual agent

Fig. 3. Flowchart of movement models.
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separation rules respectively. For the simulations, we
decided to have the three angles relying on the  movement
span angle. The value for  max-align-turn is set to half of
the movement span angle, and  max-cohere-turn and max-
separate-turn to one-third of the movement span.

D. Pre-simulation Setup
In pre-simulation experiments, we tested each movement

model without an APF added to the arena to analyze the
emergent global behavior. We started the experiments with

200 agents randomly distributed in the arena and allowed
the simulations to run for 7,000 time steps. Figs. 6(a), 6(b)
and 6(c) show the aggregation of the fish-like, mosquito-
like  and  firefly-like  swarms  movement  models,
respectively. For the fish-like movement model, the agents
aggregate in large numbers in several groups. The firefly-
like movement model, on the other hand, shows that agents
formed several clusters with a small number of agents in
each cluster. Using the mosquito-like movement model, fig.
6(b) shows that the agents aggregate in several large and
small groups. This behavior is similar to what Ikawa and
Okabe [14] suggested, that mosquitoes do not remain at a
single  swarming  site  but  repeatedly enter  and leave  the
sites. For this reason, mosquitoes aggregate with large and
small numbers in each group; hence, the name mosquito-
like movement model. 

III. SIMULATIONS AND RESULTS

As previously mentioned, 300 agents were used in these
simulations. All simulations used a square arena of size 201
by 201 patches, such as the one shown in Fig. 1. Thirty
runs are made for each movement model, as stated before,
with random initial placement of the agents in the arena.
The performance was evaluated at the end of the simulation
and all runs were executed for 7,000 simulation time steps
to give enough time for all agents to aggregate towards the
field. The data for analysis was recorded at every 100 time
steps during the simulation.

A. Evaluating the fish-like movement model
In evaluating each movement models, first we counted

the number of agents within the circular area starting from
the center of the field, in our case, from the patch at (0,0).
As the number of agents in the simulations was fixed at 300
agents  and  the  working  arena  at  201  by  201  patches,
increasing from zero,  we can expect  that  the number of
agents should reach 300 when the radius of the circular area
originating from the the center of  field reaches 141, as it
would completely cover the arena. The reason we counted
the number of agents within the circular area was to see
how close  these agents are to the center of APF.

As stated previously, for the fish-like movement model,
we  set  the  movement  span to  10-degrees  and  visibility
range to 10 patches. Fig. 7 shows the agent's location from
one of the simulations at  three different simulation time
steps; 150, 330 and 500 time steps, respectively. It is clear
that as early as 150 time steps, more than half the number
of agents have already converged towards the center of the
arena.

During the  flock inside field phase, the flocking agents
exhibited a smooth circling behavior concentrated on the
origin of the APF; in this case, the center of the arena. The
overall  direction  of  the  flow  appears  to  be  random,
sometimes clockwise and sometimes anti-clockwise. The
reason for this is because as soon as an agent enters the
field it will look around for flockmates. If any is found, it
will  change  its  direction  to  match  the  majority  of  its
flockmates  in  either  a  clockwise  or  anti-clockwise
direction,  resulting  in  the  aforementioned  emergent
behavior inside the field.

Fig.  8(a)  and 8(b)  are  plots  of  the  number of  agents
within  the  circular area from the center  of  the APF,  at
simulation time steps of 500 and 5000, respectively. The
results show that, at 500 simulation time steps, almost all
the  agents  are  already  inside  the  field;  in  other  words,
almost  all  of  the  300  agents  have  already  converged

(a) (b)

(c)

Fig. 6. Agents position at t = 7000 time steps of three movement models:
(a) fish-like, (b) mosquito-like, (c) firefly-like.

(a) (b)

(c)

Fig. 5. Agents motion trajectories for each movement model: (a) fish-like,
(b) mosquito-like, (c) firefly-like.
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towards the field of radius 63, with small variances. Fig.
8(b)  shows that,  by 5000 simulation  time  steps,  all  the
agents are converged inside the field with no or negligible
variance.

B. Evaluating the mosquito-like movement model
As mentioned above, for the mosquito-like movement

model, we set the visibility range and movement span to 7
patches  and  45-degrees,  respectively.  In  this  movement

(a) (b) (c)

Fig. 7. Positions of agents in the arena at different time steps for the fish-like movement model; (a) at 150 time steps, (b) at 330 time steps, (c) at 500
time steps.

(a) (b)

Fig. 8. Number of agents for the fish-like movement model within circular area from the center of APF; (a) at 500 simulation steps, (b) at 5000
simulation steps.
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Fig. 9. Positions of agents in the arena at different time steps for the mosquito-like movement model; (a) at 500 time steps, (b) at 1000 time steps, (c) at
1500 time steps.
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model, without the field agents appear to be forming
several clusters of varying size as shown in Fig. 6(b)

Fig. 9 shows the snapshots of one of the simulation runs
for the mosquito-like movement model at  three different
time steps: 500, 1000 and 1500 time steps, respectively. At
t =  500,  we can notice that  more than two-third  of  the
agents are already converged towards the center of arena, at
t = 1000, the number of agents is increasing and at t = 1500
almost all the agents have found the field and aggregate
near the center.

During the flock inside field phase, the flocking behavior
appears to be circulating the origin of the field, but not as
smoothly  as  that  exhibited  by  the  fish-like  movement
model. In this case the agents tend to stay a little bit closer
to their flockmates, thus limiting the circulating movement.

Figs. 10(a) and 10(b) show the plot of the number of
agents within a particular radius of the center of the field, at
simulation time steps of 500 and 5000, respectively. From
fig. 10(a), it can be clearly seen  that at t = 500, around 250
agents are flocking inside the field with a variance around
10 agents. At 5000 simulation time steps, all the 300 agents
have converged towards the center of the field with a small
standard deviation of 1.21.

C. Evaluating the firefly-like movement model
For  the  firefly-like  movement,  we  fixed the  visibility

range to 5 patches and movement span 90-degrees. Fig. 11
shows  one  of  the  simulation  runs  for  the  firefly-like
movement  model  at  1000,  2000  and  3000  time  steps,
respectively. At t = 1000, even though some of the agents
are already converged towards the center of arena, we can
clearly see that a great number of agents are still  in the
wander or flock phase; in other words, agents are roaming
in the arena looking for flockmates or flocking outside the
field. At  t = 2000, the number of agents outside the  field
seems to decrease significantly compared to  t = 1000. At t
= 3000, almost all the agents are in the wander inside field
phase or have already converged towards the field.

During the  flock inside field phase, unlike the previous
two movement models,  instead of  agents circulating the
origin of the APF, the agents seem to only converge to the
center of the field and move around only within their small
local area.

 Figs. 12(a) and 12(b) show the plot of number of agents
within  a  particular  radius  of  the  origin  of  the  APF,  at
simulation time steps of 500 and 5000, respectively. From
fig. 12(a), we can see that at t = 500, the number of agents
increases almost linearly with radius, this shows that the
agents are still evenly distributed across the arena; while at

(a) (b)

Fig. 10. Number of agents for the mosquito-like movement model within circular area from the center of APF; (a) at 500 simulation steps, (b) at 5000
simulation steps.
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Fig. 11. Positions of agents in the arena at different time steps for the firefly-like movement model; (a) at 1000 time steps, (b) at 2000 time steps, (c) at
3000 time steps.
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t = 5000, all the 300 agents have converged towards the
center of the field with a small standard deviation of 1.87.

D. Evaluating mean distance
In order to further understand how the swarm converges,

we then  computed  the  mean  distance,  D of  each  agent
towards the center of APF at  each time step during the
simulations as in (2); where xa and ya are the x-coordinate
and y-coordinate of agent a, and n is the number of agents
in the simulation.

D!
"
a!1

n

#$xa
2% ya

2&

n (2)
Fig. 13 shows the plots of mean distance D, against time

for each movement model. Fig. 13(a) and 13(b) show plots
for the fish-like and the mosquito-like movement models.
As can be observed from the plots, the variance of D over
30 runs reaches to about 5 prior to convergence; while for
the  firefly-like movement model  fig.  13(c)  has  a  higher
variance of around 10 prior to convergence.

(a) (b)

Fig. 12. Number of agents for the firefly-like movement model within circular area from the center of APF; (a) at 500 simulation steps, (b) at 5000
simulation steps.
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Fig. 13. Convergence of mean distance, D during simulations; (a) fish-like, (b) mosquito-like, (c) firefly-like movement models.

fish-like

0

10

20

30

40

50

60

70

80

90

0 2000 4000 6000

simulation time steps

m
ea

n
 d

is
ta

n
ce

mosquito-like

0
10
20
30
40
50
60
70
80
90

0 2000 4000 6000

simulation time steps

m
e

a
n

 d
is

ta
n

c
e

firefly-like

0

20

40

60

80

100

0 2000 4000 6000

simulation time steps

m
ea

n 
di

st
an

ce

2379

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 24, 2008 at 11:34 from IEEE Xplore.  Restrictions apply.



Fig.  13  also  shows  the  significant  difference  in
convergence  rates  between the  three  movement  models.
The graphs clearly show that the fish-like movement model
converges faster than the other two; while the firefly-like
movement model is the slowest. This can be explained by
the fact that for the fish-like movement model, with a small
movement span of 10 degrees, agents can cover a wide area
in a short time; while in the firefly-like movement model,
with a wider movement span of 90 degrees, the agents are
more likely to scan within their local area.

From the fig. 13(c), it can be seen that the mean distance,
D,  for the firefly-like movement model is the smallest at
around 18 units; while the fish-like model in fig. 13(a), has
the largest at around 27 units. 

From fig. 7(c) for fish-like, fig. 9(c) for mosquito-like
and fig. 11(c) for firefly-like movement models, it can be
seen that when the systems converged, they form loose,
medium and  tight  clusters,  respectively.  It  is  the  innate
tendency to form these kinds of clusters that  affects the
mean distance D values in the plot of fig. 13.

IV. CONCLUSIONS

In  this  paper,  we  have  selected  several  individual
behaviors in terms of  single-agent movement models and
studied their effect in a macroscopic swarm.

Results show that by changing the limits of the angle
through which  an agent  can turn,  i.e. movement  span,
various  swarming  behaviors  can  be  achieved.  Several
emergent behaviors are achieved and these behaviors affect
the convergence rate in performing an aggregation task.

Future directions of this work will include investigation
on how the population density in  the arena  affects  the
performance and the convergence rate. Also, further work
will  be  carried  out  in  scenarios  with  more  than  one
attraction field with varying strengths and the effect this
will have on an agent's trajectory and the group behavior of
the swarm. Several types of obstacles will also be modeled
in  order  to  understand  the  emergent  behaviors  that
obstructions may produce.
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